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This paper presents ideas and progress towards a more general reconceptualization of entropy
that can be used to recover and extend thermodynamics and statistical mechanics. This would ad-
dress foundational questions such as: why does entropy posses both objective qualities (i.e. it is a
measurable property) and in (i.e. it is an ensemble property)? Is there a general notion of equilib-
rium that includes both dynamical and thermodynamical equilibria in a way that is relativistically
invariant? What is entropy maximization, why is so successful in many fields and how is it linked
to state definition? The working hypothesis is that entropy is the logarithm of the count of the
possible evolutions of a system within a specific process. That is, given the description of system
at the desired granularity level, we count all the way the system can evolve in time that are com-
patible with that description. This switch from counting states to counting evolutions makes the
concept more relativistically sound and allows to properly keep track of how the information about
the system is transported back and forward in time by the process, which is essential to apply the
concept in a more general setting. Defining states requires, at least in some setting, the indepen-
dence of the system, which indirectly leads to entropy maximization. The objective is to formulate
a precise mathematical framework that makes this intuition precise and recovers the usual entropies
in specific settings.

This work is part of Assumptions of Physics (https://assumptionsofphysics.org), a project
that aims to identify a handful of physical principles from which the basic laws can be rigorously
derived.

1. INTRODUCTION

This paper presents the goal and the current status of our research. It is intended to gather early feedback, including
pointers to other relevant work. Feedback is welcome and encouraged.

The overall goal of Assumptions of Physics is to identify a handful of physical principles from which the basic laws
can be rigorously derived. Part of this work is establishing a formal framework for states and processes, of which the
definition of entropy is a crucial aspect. We will not assume specific knowledge of the rest of our framework[1, 2],
though ultimately the goal is to integrate this work with the rest. As usual, a formal construction from scratch will
force us to make explicit the physical requirements that are baked into the use of the common concepts and provide
us with a framework that is, hopefully, still valid when those assumptions fail.

Previous work focused on showing how requiring experimental verifiability of a theory leads to topological and σ-
algebraic structures within that theory. Another effort is exploring how the ability to compare the level of granularity
within the theory is connected to geometric and measure theoretic structures, giving us a way to quantify the informa-
tion contained in each statement of the theory. We now want to characterize the relationship between the granularity
(i.e the information content) of the descriptions at different times. The working hypothesis is that entropy cap-
tures how coarse or fine grained is the description of a particular system within a particular process.
It does so by measuring the logarithm of the count of the possible evolutions that are compatible. One
way to look at it is that as the Boltzmann entropy fails to take into account interactions and correlations between
molecules, the count of the microstates and the Shannon/Gibbs entropy fail to take into account system/environment
correlations. Since these correlations may change in time, the same description of the same system will corresponds
to different entropy in time, and this is what the process entropy is designed to solve. The central problem of this
paper is therefore to understand what are the appropriate basic definitions, how do they map to the standard ones
and how system independence, as characterized by entropy, is required for the very definitions of systems and states.

To give a sense of how this would work, we start with defining a process domain P̄, which represents all meaningful
statements, all descriptions at all times and at all scales, that apply to a particular process. Mathematically, it is
a σ-complete Boolean algebra, which means it is closed under negation, countable disjunction (i.e. logical OR) and
countable conjunction (i.e. logical AND). It will also come equipped with a partial order ≼ such that s1 ≼ s2 if s1∨s2 ≡ s2
that indicates whether one statement gives a narrower, more specific, description than the other. For example:
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� “The position of the object is between 0 and 1 meters” ≼ “The position of the object is between 0 and 1 kilometers”
� “The fair die landed on 1” ≼ “The fair die landed on 1 or 2”
� “The first bit is 0 and the second bit is 1” ≼ “The first bit is 0”

Additionally, we will have a way to compare any two statements and decide whether one provides a description at
a finer level of granularity. Mathematically, we have an additional preorder t∶ D̄ × D̄ → B. Saying s1 t s2 means that
the description provided by s1 is finer, gives more information, is more precise, than the description provided by s2.
We say that two descriptions are equigranular, noted s1 ≐ s2, if they provide the same level of detail. For example:

� “The position of the object is between 0 and 1 meters” t “The position of the object is between 2 and 3 kilometers”
� “The fair die landed on 1” t “The fair die landed on 3 or 4”
� “The first bit is 0 and the second bit is 1” t “The third bit is 0”

In these cases, the first statement may not be contained or overlap with the second. We will assume fineness have all
the properties it needs such that if a statement u ∈ P̄ is chosen, we can construct a measure µu that quantifies the
granularity of a statement in terms of the unit. For example, if u = “the position of the ball is within 0 and 1 meters”
and s = “the position of the ball is within 3.5 and 5 meters”, then µu(s) = 1.5.

Each process domain will include a set of possibilities E: these statements are the narrowest possible statement
and provide the full description the whole process at all times and at all level of detail. We call evolutions these
statements as they effectively describe the evolution of the all systems within the process. We will assume that all
evolutions are equigranular (i.e. e1 ≐ e2 for all e1, e2 ∈ E). The measure is therefore always uniform over the possibilities
and therefore characterizing the granularity level of a description is effectively equivalent to counting the evolutions
that are compatible with such description. The process entropy S(s) = lnµ(s) is defined to bethe logarithm of that
count, and therefore the logarithm of the measure.

With these basic definitions we can transport statements back forth in time and see how the process entropy
changes. More specifically, for each instant of time t ∈ T we can define a respective subdomain D̄t ⊆ P̄ that contains all
the descriptions at that particular time. Given a statement s0 at time t0, we can define the best prediction s1 at time
t1 > t0 and find that its process entropy must be greater (i.e. S(s1) ≥ S(s0)). We can also define the best reconstruction
s−1 at time t−1 < t0 and find that its process entropy also must be greater (i.e. S(s−1) ≥ S(s0)). Intuitively, information
about a system at a particular time can only get worse (or stay the same) as we transport that description forward
or backward in time along the process. This relationship is symmetric with time.

Similarly, we can define a trajectory x(t) of a particular system, where x is the full description of that system. A
process is deterministic if knowing x(t) means we can predict x(t+∆t), meaning that all evolutions that start in the
same state must also end in the same state: evolutions can merge and cannot diverge. Therefore the evolution count,
and therefore the entropy, can never decrease: S(x(t)) ≤ S(x(t + ∆)). A process is reversible if knowing x(t + ∆t)
means we can reconstruct x(t), meaning that all evolutions that end in the same state must also start in the same
state: evolutions can diverge and cannot merge. If a process is deterministic end reversible, then, the evolution count,
and therefore the entropy, must be conserved S(x(t)) = S(x(t +∆)).

The last insight is that states are description of the system and only of the system. This happens only when the
system is independent: the evolution of the system tells us nothing about the evolution of other systems. Independence
means both factorization of the measure (and linearity of entropy) and it’s maximization: the lack of correlations means
all evolutions are possible. States can then be characterized by entropy in a way that is process independent, and lead
to the geometrical structures of thermodynamics, classical, quantum and statistical mechanics.

The strength of the approach is that these definitions will apply to processes independently of the discipline (i.e.
physics, economics, ecology, ...) or the kind (i.e. deterministic, irreversible, stochastic, classical/quantum, ...). In
particular, it will work in dissipative systems or dynamical systems with equilibria, where the standard notion of
entropy decreases as it proceeds toward equilibrium. Additionally it reduces to the standard notions in the appropriate
settings. For example, if we assume the system is characterized by a Hamiltonian system over time (i.e. the extended
phase space charted by {qi, pi, t} with Hamiltonian flow), the measure reduces to counting the states at each time. If
the flow is not Hamiltonian, however, the phase space measure is not the correct measure at all times (i.e. the same
precision over q and p at different times corresponds to a different amount of information). On the other hand, if we
assume the system over a small ∆t fluctuates randomly according to a distribution ρ, then the counting the possible
evolutions means counting permutations. The process entropy, then, can be expressed as ∫ ρ lnρ, and the Shannon
entropy is recovered.

2. OVERVIEW

We now give a more detailed overview of the goal and status. This will also cover the conceptual understanding and
physical motivation, not just the mathematical aspects. Later sections will present both what has been established to
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work and what not to work in full mathematical detail.
The overall goal is to describe a generic system as it evolves in time by defining a minimal set of concepts that such

a setup must define, thus bringing to light the tacit assumptions underlying state spaces and evolution laws. We want
to find notions that are equally valid and useful within different settings (e.g. thermodynamics, dynamical systems,
classical mechanics, ...).

An excellent review of the history of thermodynamics and classical statistical mechanism, and therefore of the
different concepts of entropy, has been compiled by Uffink (cite UFFINK). As for terminology, by Shannon entropy
we will generally refer to the family of expressions based on the p log p formula. This will include the Shannon entropy,
it’s extension to the continuous, the Gibbs entropy and the Von Neumann entropy. By postulate entropy we will
mean the one defined by the fundamental postulate of statistical mechanics, which is the logarithm of the count of
microstates. We will not be discussing the Boltzmann entropy specifically, as this can be understood as a special case
of the Gibbs entropy where all particles are identically and independently distributed. When correlations between
particle/molecules are present, the Boltzmann entropy fails to correspond to the thermodynamic entropy.

2.1. Preamble

Before we start, we list of a set of problems this approach will need to solve. We also include common points of
confusions on entropy, thermodynamics and statistical mechanics.

Success of entropy outside of physics. As entropy maximization is increasingly used outside of physics, we need
a coherent explanation as to why that happens. The postulate entropy at this level is not insightful: it is unlikely that
the primary explanation for ecological distributions is fluctuations of atoms. Therefore we need a principled account
for the entropy maximization on more general grounds.

Entropy increases for dynamical equilibria. For a dynamical system, the presence of equilibria (or more in
general attractors) leads to entropy decrease, which is the opposite of what one would expect. Take a dissipative
system, like a damped harmonic oscillator: areas in phase space will shrink which leads to a lower count of states
and therefore a lower postulate entropy; distributions will become more concentrated which leads a lower Shannon
entropy. Therefore, as we approach equilibrium, the entropy decreases which is the opposite of what we would expect.
This needs to be reconciled.

Ontological vs subjective view of entropy. On the nature of entropy, there are two positions that we find
untenable. One position takes entropy to be an objective “ontological” quantity, ontological in the sense that, like
charge or position, is an inherent property of the single instance of the system, such as total energy or total momentum.
This does not work as the entropy is a property of the ensemble: for the Shannon entropy is a functional of the
distribution ρ and for the postulate entropy is the volume of a phase space region. The other position takes entropy
to be the subjective information one has about the system, which also does not work. The ensemble is connected to
possible fluctuations of the system which are measurable and independent of what we may or may not believe about
the system. The idea here is that the notion of equilibrium is process dependent: it depends on both the system and the
environment. It depends what happens at the boundary. Even isolation is a type of boundary, which is also technically
impossible (e.g. we cannot isolate from gravitational interactions). Therefore entropy should be epistemological but
objective: it quantifies the level of granularity/information (epistemological) that is accessible through a particular
process allows (objective).

Information content is time dependent. Both the postulate and the Shannon entropy are time independent.
This presents a problem because the same statement at different times can provide different information. Take “Mark
is in bed”. If it is 2 am, the statement is very likely to be true, therefore provides little information. If it is 1 pm,
the statement is very unlikely to be true, and therefore provides more information. In the same vein, if we have a
dissipative system, “the energy of the system is less than 3 J” provides less and less information as time goes on. It
should be clear that a proper definition of entropy that would work far from equilibrium will need to take this into
account.

Equilibria and relativity. Another problem related to time dependence is that the notion of theromdynamic
equilibria is not, in general, relativistic. The notion of “equilibria as nothing is changing” is not invariant under boost.
A volume of gas would be at equilibria only if at rest. For a boosted frame, something would be changing (i.e. the
position). This also suggests an automatic interaction with gravitational forces: a volume of gas at rest would follow
geodesics for other observers. Another failure of thermodynamic equilibria in a relativistic context is the following.
Suppose a volume of gas is at rest for an observer reaches equilibrium at time t0. This means there is a region of
space ∆x that after t0 can be considered at equilibrium. But equal time for a boosted frame is different, so different
observers will observe different parts reaching equilibrium at different times.

Thermodynamic reversibility vs dynamical reversibility. There are different notion of reversibility. Ther-
modynamic reversibility is the existence of a process that “undoes the change”. This is problematic as this process
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technically does not exist in many cases. Dynamical reversibility is the ability to reconstruct the initial state. This
is also called by some retrodictability or reverse determinism. A dissipative system should be regarded as thermody-
namically irreversible, yet is technically retrodictable.

Units for entropy. Units are often stripped out and not discussed, which leave the mathematics with imprecise
physical meaning. If entropy is associated to phase space volume, we should note that the unit of phase space volume
depends on the number of degrees of freedom of the system. This means that the entropy of two systems with different
number of particles is not numerically comparable as the areas are not commensurable. We need a precise account
for this in the math.

Entropy of a single microstate. The entropy of a single microstate is minus infinity, and not zero. A single
microstate occupies zero area and the logarithm of zero is minus infinity. In terms of Gibbs/Shannon entropy, a single
microstate would correspond to a delta function. The infinite density at that point contributes minus infinite entropy,
and since the distribution is zero everywhere else, there are no other contributions. In quantum mechanics, all pure
states have zero von Neumann/Shannon entropy. In a way, that is the problem that quantum mechanics fixes.

Entropy over continuous variables. The definitions of entropy are in general not invariant under coordinate
transformations (i.e. change of continuous variables). It is the structure of phase space in classical mechanics and of
the quantum Hilbert space that make entropy invariant. It can be shown that classical phase space (i.e. symplectic
manifolds) is exactly the structure needed for a coordinate invariant (see [3]).

2.2. Descriptions and logical relationships

The first step is to give the most basic mathematical structure we must have to be able to describe a process at all
levels of granularity. This consists of a purely logical structure that imposes logical relationships between all possible
descriptions.

Process domain. Our starting point is the process domain P̄, which is the set that contains all possible
descriptions of the system at all levels of detail at all possible times. Depending on the process, it will contain
statements like “the average volume of the system between 1 and 2 seconds is between 3 and 4 liters” or “the trajectory
of the particle is y = 10m − t2 ⋅ 9.80665m/s2”. It does not matter at this point what the statements themselves are,
except they must be, at least in line of principle, defined from experimentally well-defined starting points. The
translation of these physical requirements into a formal structure has already been carried out in previous work (see
[1]). Mathematically, P̄ is a σ-complete Boolean algebra1 and it is the closure of the set of experimentally verifiable
statements P ⊆ P̄.2

Logical relationships. As P̄ contains different levels of description, some statements will be more or less specific.
For example, we say that “the horizontal position is between 2.5 and 3 meters” is narrower than “the horizontal
position is between 2 and 3.5 meters”. Note that whenever the first statement is true, the second one must be true
as well. Given two statements s1, s2 ∈ P̄, we formally capture this relationship by noting s1 ≼ s2 (read “is narrower
than”). Narrowness can describe relationships at different scales, on different quantities (e.g. “the horizontal position
is between 2.5 and 3 meters and the vertical position is between 1 and 1.5 meters” ≼ “the horizontal position is between
2.5 and 3 meters”), constraints between variables at the same time (e.g. “the temperature of the water in the glass
is 3.98 ○C” ≼ “the density of the water in the glass is 1 g/cm3”) or at different times (e.g. “at time 0 s the position
is 1 m and the velocity is 1 m/s” ≼ “at time 1 s the position is 2 m”). It is a general tool to capture relationships
within the theory which intuitively can also be thought of as implication.3 Mathematically, a Boolean algebra is also
a lattice (i.e. a partially ordered set with supremums and infimums) and ≼ is the ordering relationship for P̄.

We can define other two logical relationships, which will be useful later. For example, we want to say that “the
horizontal position is between 2.5 and 3.5 meters” is compatible with “the horizontal position is between 2 and 3
meters”, meaning that they can be true at the same time. Given two statements s1, s2 ∈ P̄ we denote s1 � s2 (read “is
compatible with”) if it is possible for them to be both true. Finally, we want to capture whether the truth of one or
more statements influences the truth of others. For example, we want to say that “the temperature of the water in the
glass is 3.98 ○C” is independent from “the volume of the water in the glass is 10 cL” but is not independent from
“the density of the water in the glass is 1 g/cm3”. We note s1 á s2 (read “is independent of”) when two statements
are independent.

Possible evolutions, topology and σ-algebra. Within our process domain P̄ we can define the set E of the
narrowest possible statements. Its elements give a complete description of our system at all times and therefore we

1 A set of statements that is closed under negation (NOT), countable disjunction (OR) and countable conjunction (AND).
2 The set P will form a Heyting algebra which, to be experimentally reachable, must allow a countable basis. The closure P̄ is in terms

of negation and countable disjunction.
3 Technically, implication in classical logic is a truth function as classical logic does not incorporate the idea of different “possible cases”.

What we have is more similar in spirit to semantic consequence in modal logic, though modal logic brings in a lot of undesirable elements
we do not want.
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call them evolutions while we call E ⊂ P̄ the set of all possible evolutions. In the Assumptions of Physics framework,
E is the set of possibilities.

Every statement s ∈ P̄ can now be characterized by the set A(s) ⊆ E of all evolutions compatible with s, that is all
the evolutions for which s will be true. Mathematically, A(P) is a topology over E while A(P̄) forms a σ-algebra
over E, the Borel algebra of A(P). Narrowness and compatibility become set relationships in the σ-algebra: s1 ≼ s2
if and only if A(s1) ⊆ A(s2) (i.e. all evolutions for which s1 is true are such that s2 is also true) and s1 � s2 if and only
if A(s1) ∩A(s2) ≠ ∅ (i.e. two descriptions are compatible if there is an evolution that is compatible with both). This
connection gives a direct physical meaning to these foundational set-based mathematical structures.

Symbol Name Meaning
P̄ Process domain The set of all possible descriptions at all

times and at all levels of granularity
E ⊂ P̄ Possible evolutions The set of descriptions that give a full ac-

count of the process; they correspond to
the narrowest statements within P̄

A(s) Compatible evolutions The set of evolutions that are compatible
with the statement s

≼ narrower A statement is narrower than another s1 ≼
s2 if the second one is true whenever the
first one is

� compatible A statement is compatible with another
s1 � s2 if they can be true at the same time

á independent Two statements are independent s1 á s2
if the truth of one does not influence the
truth of the other

TABLE I. Process descriptions and their logical relationships

2.3. Granularity and quantifying evolutions

Now that we have a way to track all possible descriptions about a process and their logical relationship, we need
to characterize their granularity. It turns out that this is equivalent to counting how many evolutions are compatible
with each description: the more fine-grained the description, the fewer evolution (i.e. the fewer cases) it will identify.

Insufficiency of a single measure. The next step is to quantify the granularity of the description provided by
each statement. Since statements at a finer level of description will put a greater constraint on the set of compatible
evolutions, quantifying the granularity of the description of s means quantifying the size of A(s). The statement “at
time 0 s the particle is between 0 m and 1 m” is doubly more specific than “at time 0 s the particle is between 0 m
and 2 m” precisely because it corresponds to half the evolutions of the second statement.

The naive approach would be to assign a measure over A(P̄): since this is a σ-algebra over E and a measure is
exactly what one uses to give a size to each set, it would seem we are done. Unfortunately it is not that simple: a
single measure can only compare objects of the same dimensionality. If we imagine all evolutions to be points on an
n-dimensional manifold, if the measure gives finite values for k-dimensional regions it will necessarily give measure zero
for all regions with lesser dimensionality and infinite measure for those with greater dimensionality. Coarse grained
and subsystem descriptions will have different dimensionality as they describe different numbers of degrees of freedom,
therefore we need a way to quantify objects at all levels.4

Fineness and equigranularity. Our starting point will be the ability to compare two statements and decide
which one gives a finer description of the process. Formally, we have preorder t on P̄ which, given two statements,
tells us whether the description of one is finer, more refined, than the other. Two statements are equigranualar,
noted s1 ≐ s2, if they provide the same level of description. For example, we can say that “the trajectory of the particle
is y = t ⋅ 1m/s” ≐ “the trajectory of the particle is y = t ⋅ 2m/s” and that “the position at time 0 sec is between 0 and
1 m” ≐ “the position at time 0 sec is between 1 and 2 m”, even though the second pair is infinitely less discerning
than the first. Note that if one statement is narrower than the other (i.e. s1 ≼ s2) then it is also finer than the other
(i.e. s1 t s2) while the converse is not necessarily true.

4 Typically one uses geometrical structures for his purpose. In phase space, the symplectic form allows us to define areas of two-dimensional
surfaces, and use those to define volumes or even-dimensional areas. Note that it does not quantify the size of the points, which are
implicitly assumed to be of equal size. This is a special case and cannot be the starting point.
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We say two statements are comparable if one is finer than the other. The preorder t is partial because not all
statements are comparable to each other. For example, consider the pressure/volume state space for an ideal gas.
Comparing “the pressure is 1 kPa and the volume is between 1 and 2 liters” and “the pressure is between 1 and 2
kPa and the volume is 1 liter” would mean saying whether one liter is bigger or smaller than one kPa.5 The idea of
physical dimension would therefore be something that is formally captured mathematically.

The idea is that geometrical, measure theoretic, information theoretic and probabilistic structures all descend from
this more fundamental structure, the partial order that describes this “information granularity”. We note that all these
structures can be used to determine a size and therefore a partial order on the set. It would be possible, given sufficient
conditions, to recover those structures from the order itself. The mathematical detail of how exactly this would work
(i.e. what conditions are necessary and sufficient) is out of the scope of this work (see CITE other blueprint). Here
we will simply assume that the process domain is such that the geometrical structures can be rederived.

Measures of granularity. To recover measures, we pick a statement u ∈ P̄, called unit, and construct a measure
µu that is normalized (i.e. µu(u) = 1), monotonic (i.e. s1 t s2 will mean µu(s1) ≤ µu(s2)) and additive (i.e. µu(s1 ∨ s2) =
µu(s1) + µu(s2) if s1 � s2).6 That is, we can quantify how much more or less precise a statement is compared to a
fixed statement taken as a unit. If two statements are such that the measure of one with respect to the other is finite
and non-zero, we say they are finitely comparable. We can show that if u1 and u2 are finitely comparable we have
µu1(s) = µu1(u2)µu2(s). Furthermore, since all evolutions give a complete description of the whole process, we will
assume they are all equigranular. Therefore if we pick u ∈ E, then µu(s) = #(A(s)) would be the counting measure of
evolutions compatible with s.7

Independence. If we fix the evolution of one subsystem, it should be intuitive that the possible evolutions of another
subsystem depends on the correlation between the two. The maximum number of joint evolutions corresponds to the
case were the systems are independent: the choice of evolution for one does not contrain the choice of evolution for
the other. In this case, we expect the measure to factorize. Mathematically, we take two subdomains P̄1 ⊂ P̄ and
P̄2 ⊂ P̄. By subdomains we mean a set of descriptions that also form a σ-complete Boolean algebra. We say the two
subdomains are independent if knowledge of one does not constrain knowledge of the other. Mathematically, any
pair of statements (s1, s2) ∈ P̄1 × P̄2 from the two domains is independent s1 á s2. As we expect the count of evolution
to factorize, we have µu1∧u2(s1 ∧ s2) = µu1(s1)µu2(s2). In terms of the math, this can be imposed but it would be nice
to show that this has to be the case. It can be shown for finite sets. It is not clear whether it must be for infinite ones.
Also, note the units of the measures are different. As an analogy to classical phase-space, the area of each degree of
freedom can be expressed in units of h̵. The volume of two degrees of freedom, however, is in units of h̵2. This is an
additional detail that needs to be fully understood mathematically in a way that is typically glossed over in statistical
mechanics.

Process entropy. We are now ready to define the process entropy with respect to u as the quantity Su(s) =
logµu(s). This can be thought of as the number of bits, yes/no questions, that separate the level of description of u
from the one provided by s. Note that process entropy combines linearly for independent systems: Su1∧u2(s1 ∧ s2) =
logµu1∧u2(s1 ∧ s2) = log(µu1(s1)µu2(s2)) = logµu1(s1) + logµu2(s2) = Su1(s1) + Su2(s2). Also note that there is a unit
dependence, so one can’t simply compare the entropy of two different systems as they would be, most likely, expressed
in different units. It typically does not pose a problem because we compare entropy of different description of the
same object. This issue already exists with the other entropies, we are simply making in explicit so that we can study
it.8

Recovering the postulate entropy. Entropy as the logarithm of the state count can be easily recovered as a
special case. Suppose the process is deterministic and reversible in the sense that the state at one time identifies
the whole evolution. Suppose that all state descriptions at one time are equigranular. In that case, the count of the
evolution corresponds to the count of states and therefore the process entropy coincides with the postulate entropy.

Recovering the Shannon entropy. One way to recover the Shannon entropy (though probably not the only one)
is to assume we have a process that is fluctuating according to a stable distribution ρ(s). That is, our time resolution
is fixed at a scale ∆t, the state s keeps changing within that interval. The distribution ρ(s) represents how often
the system will visit the state s within that timeframe. To calculate the process entropy we need to calculate how
many possible evolutions we would have within ∆t that satisfy ρ(s). An evolution is a sequence of states, one for each
instant in time. If we assume the evolution is continuous, countably many states will suffice to identify one evolution.
Therefore we are looking to count the possible permutations of a countably infinite sequence with recurrence set by
ρ(s). But this is exactly one way to recover the Shannon entropy. Therefore, in this case, the process entropy coincides
with the Shannon entropy.

5 In phase space, for example, we cannot in general compare qi and pi, yet we can always compare areas of phase space
6 Differentiating between finite or countable additivity is beyond the scope.
7 We still need to understand the necessary and sufficient conditions under which such measures would exist and be unique. For the

present work, we assume it can be done.
8 The phase space volume will be in units h̵n where n is the number of degrees of freedom, typically n = 3m where m are then number

of molecules. While 3 < 4, there is no sense in which 3h̵6 is smaller than 4h̵12 therefore comparing the entropy of gasses with different
number of particles is not well defined.
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Probability. Quantifying evolutions allows us to define probability. The idea is a process can be realized differently
by each possible evolution. The more evolutions a statement is compatible with, the more it is likely to happen. For
example, consider a process that implements a coin flip. If the coin (and the process flipping the coin) is fair, we must
have that half the evolutions are compatible with “the coin is head” while the other half are compatible with “the
coin is tails”. Therefore we define that the probability of s2 given s1 is

P (s2∣s1) = µs1(s1 ∧ s2) =
µu(s1 ∧ s2)
µu(s1)

(1)

where s1 ∧ s2 is the logical conjunction (AND) between the two statements and u is finitely comparable to s1. In other
words, the probability quantifies the ratio of evolutions compatible with s1 that are also compatible with s2. This can
be shown to satisfy the standard axioms of probability.

Symbol Name Meaning
t finer A statement is finer than another s1 t s2 if

it provides a more refined description than
the second

≐ equigranular A statement is equigranular to another s1 ≐
s2 if they provide the same level of detail

µu(s) Measure Quantifies the precision of a statement s
in terms of a reference unit statement u; it
quantifies how many evolutions are com-
patible with s compared to the evolutions
compatible with u

Su(s) Evolution entropy Defined as logµu(s); represents the num-
ber of bits that separate the level of de-
scription of s from the one provided by the
unit statement u; it quantifies the number
of questions needed to go from the level of
description of s to the level of description
of u

P (s2∣s1) Probability Defined as µs1(s1 ∧ s2); quantifies the frac-
tion of evolutions compatible with s1 that
are also compatible with s2

Comparable Two statements are comparable if one is
finer than the other

Finitely comparable Two statements are finitely comparable if
the measure of one in terms of the other is
finite and non-zero

TABLE II. Granularity, measures and probability

2.4. Time, predictions and reconstructions

Now that we have a way to keep the logical structure and granularity of all descriptions of a process, we want to
understand how the information is transported back and forward in time by the process. That is, once a particular
description is verified at a particular time, what can we say about past and future times.

Time domains. As a process extends over time and potentially describes multiple systems, we want to organize the
statements into subdomains, one for each moment in time relative to a particular system. Given a time parameter
t ∈ T ⊆ R, we can imagine carving out a system domain D̄t that would correspond to all the statements about the
system one can make at the given time. In particular, we define one-step process as one that only has an initial
domain D̄t0 and a final domain D̄t1 . Note that D̄t is a σ-complete Boolean sub-algebra of P̄ since any logical
operation on statements at fixed t is also another statement at fixed t.

Temporal and scale coarse graining. Technically, the statements are not defined at an infinitesimal moment
t, but rather within a finite interval [t, t +∆t]. This represents the time-scale at which the process will be described,
meaning the description within D̄t should not be sensitive to what happens at faster scales. The quantities used
to represent states at time t, then, should really be thought of as averages within ∆t. In the same way, D̄t will in
general represent the system at the chosen level of description, not the narrowest level possible. Statements about the
environment or at a finer level of description (i.e. the positions of all molecules for a gas) will not be included.
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Optimal coarse graining. In principle, this coarse graining is arbitrary and subjective in the sense that is
completely at the mercy of the decision of the scientist. However, not all choices are equivalent. Ideally, we want
the process at our level of description to not depend on the faster or smaller scale dynamics. If the dynamics at
faster and smaller scale decouples from the one at slower and bigger scale, we can study the latter without worrying
about the former. So, for example, we can study the trajectory of a cannonball without worrying about the motion
of each individual molecule; we may not be able to predict the exact energy at a future time, as it fluctuates through
interactions with the environment, but we may be able to predict it’s average over a small ∆t. We should stress here
that the process itself tells us whether and how the faster/smaller scale decouples decouple from the
slower/bigger scale. Therefore the choice of an optimal coarse graining is not arbitrary or subjective at all: it is
determined by the process. The processes at our disposal guide us to carve domain at both temporal and size scale,
and finding the optimal level of scale is part of the job of a physicist. At a theoretical level, we need to understand
how a process guides us to that choice.

Predictions and reconstructions. A crucial step, then, is to characterize how the information at one time is
carried to other times by the process. Suppose we found that the statement s0 ∈ D̄t0 at time t0 was true. What can
we predict of the system at a future time t ≥ t0? Any future statement s ∈ D̄t such that s0 ≼ s will be true if s0 is
true. Therefore the best prediction will be the conjunction (the logical AND) of all such statement. In terms of order
theory, it will be the narrowest broader statement. As all statements can be thought as sets of evolutions, it will be
statement s ∈ D̄t such that A(s) is the smallest set that contains A(s0).

In a similar way, we can ask what can be reconstructed about the system at a previous time t ≤ t0. Any past
statement s ∈ D̄t such that s0 ≼ s will be true if s0 is true. Therefore the best reconstruction will be the conjunction of
all such statements, the narrowest broader statement, the smallest set A(s) that contains A(s0).

Given that the formal definition for predictions and reconstructions are similar, we note Pt(s0) the prediction or
recostribution for statement s0 at time t.

Predictions and reconstructions always have higher entropy. Prediction and reconstruction are necessarily
broader than the statement we start from and therefore they will necessarily be coarser: they cannot give us more
information then what we started with. They may either give us the same information or less information. Mathemat-
ically, s0 t Pt(s0) for any s0, t0 and t. In this respect, there is no time asymmetry: information can only be diminished
as we map it to past or future time.

The process dictates the relationship between the information at different moments in time. How
much the information diminishes depends exclusively on the process. Suppose we take a deck of cards and memorize
the order and leave it on the table. If sits undisturbed, full knowledge is maintained. If a person takes the top card
and puts it at the bottom, full knowledge is still maintained. If a person shuffles the deck, the information about the
order of the deck is lost. If a person cuts the deck, the information about the first card is lost, yet the information
about the order is not.

Natural graining. As each process defines how information is transported over time, it will define optimal gran-
ularity levels for its description. We say s0 ∈ D̄t0 cuts the process along the grain, or simply is a natural cut, if
its prediction and reconstructions do not lose information. That is, s0 ≐ Pt(s0) for all t. The certainty and the impos-
sibility are both natural cuts of all process. More work needs to be done to understand the role of natural graining in
a process, but the general sense is this would be a key element for a better definition of states and equilibria because
of the following properties.

Natural graining is automatically relativistic. Consider a free particle, whose state at a given time x0 is
fully determined by position and momentum. This will give us predictions and reconstructions at the same level of
granularity for all times, therefore x0 cuts along the grain. It doesn’t matter whether the particle is at rest or in
motion. It doesn’t matter whether “all properties” remain the same.

Natural graining is compatible with both dynamic and thermodynamic equilibrium. Continuing with
the card deck example, suppose a person takes the deck of card, cuts in half, shuffles the bottom half and orders
the top part by suit and rank. This process creates an equilibrium that is, in a way, a mix of dynamic (the top
part) and thermodynamic (the bottom part) equilibria. If we apply the process another time, in fact, the top part
remains exactly in the same configuration; the bottom part, while it will most likely change, will retain its statistical
description. Each equilibrium is fully identified by the cards in the top part. If we take the full description of the
deck at the beginning, the prediction is coarser, therefore it is not a natural cut. The full description of the top half
of the deck will also give a coarser prediction: the final order of the top half could have been reached by any initial
order of the same cards in the top half. The description of what cards are in the top half, however, gives us exactly
the information at equilibrium. Therefore it is a natural cut. This shows that the idea of natural cuts captures both
types of behavior, even when they happen at the same time.

Natural graining is time independent. One of the problems with the notion of equilibria is defining when
the equilibria is reached. Natural graining is a time independent concept, so we do not need to define when it is
reached. If we consider a dynamical equilibrium, we have a basin of attraction for an equilibrium. All evolutions that
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start in the basin of attraction will tend closer and closer to the equilibrium, without ever reaching it. The natural
graining consists in the set of all evolutions taken together. In many cases, we are not interested in a specific evolution.
For example, we have a cutoff at a certain time and we are only interested to note which equilibria the system was
approaching. Mathematically, what needs to happen is that at the cutoff the description is a natural cut for both the
previous and following process. At that point the behavior in the limit is not important, which makes the framework
more compatible with realistic scenarios.

Natural graining decouples the internal dynamics. Consider a macroscopic object, like a balloon. Though
we know it is formed by on the order of 1023 molecules, we can still characterize its state with a few variables. Each
molecule itself, maybe formed by a large number of fundamental constituents. At each level, the description is fairly
independent of the description of the constituents. Natural graining picks out those descriptions that are effectively
independent of the faster/smaller scale.

2.5. Snapshots, determinism and reversibility

In the previous section we explored how the information at a particular time moves across a process. Now we
want to concentrate on the best possible descriptions of the system at each time. That is, how the descriptions with
maximal information at each time relate to each other. This will give us straight forward definitions for determinism
and reversibility.

Snapshots and trajectories. For each time domain D̄t we can find the set of possibilities Xt, which represent
the statements that will give the most precise description at that time; we call these the possible snapshots of our
system at that time. A trajectory is a sequence x(t) of snapshots at each time. A particular evolution will identify a
trajectory: that is, given e ∈ E we can find x(t) such that e ≼ x(t0)∧x(t1)∧x(t2)∧ .... The converse is not necessarily
true because D̄t will typically describe a particular system at a particular level of granularity and a particular time-
scale. Therefore a single trajectory may correspond to multiple evolutions, since the evolutions potentially describe
the same system at greater accuracy and/or other systems.

Snapshots are not states. One key insight is that the set of possible snapshots Xt may not be the same at all
times and may not correspond to the state of the system. First of all Xt will only include those configurations that
are compatible with at least one possible evolution (i.e. A(x) ≠ ∅ for all x ∈ Xt), which may change in time. For
example, the set of possible configurations for a system under dissipative processes will shrink as they converge to
equilibrium. In quantum mechanics, the possible configurations after a measurement are restricted to the eigenstates,
and a different choice of measurement will lead to a different process with different possible evolutions. Secondly, the
best possible description may be broader than the full state of the system (e.g. when external interference forces us to
give only a statistical account within our ∆t) or narrower (e.g. when there are known correlations to the other degrees
of freedom of the environment or of the system itself). In other words: the snapshots depend on the process and on
other systems within the same process. These correlations prevents the snapshots to be proper states of a system,
since they are not descriptions about and only about the system.

Determinism. We say a process is deterministic over the system domains {D̄t}t∈T if given the snapshot at
one time we can always predict the snapshot at all future times. Formally, let t1, t2 ∈ T such that t1 ≤ t2, for any
x1 ∈Xt1 ⊂ D̄t1 we can find an x2 ∈Xt2 ⊂ D̄t2 such that x1 ≼ x2. Intuitively, all the evolutions that pass through x1 will
also pass through x2. If x(t) is the snapshot trajectory in time, we have A(x(t)) ⊆ A(x(t+∆t)): the set of compatible
evolutions must stay the same or become larger. This also means that the process entropy associated to a snapshot
cannot decrease during deterministic evolution:

Su(x(t)) ≤ Su(x(t +∆t)) (2)

since x(t) ≼ x(t +∆t) means x(t) t x(t +∆t) and µu(x(t)) ≤ µu(x(t +∆t)).
Law of evolution. Deterministic processes are exactly the ones for which a law of evolution can be written. For

each x1 ∈ X1, the final snapshot x2 ∈ X2 must be unique as all snapshots in X2 are incompatible with each other.
Therefore we can write a function f ∶ X1 → X2 such that x1 ≼ f(x1) ≡ x2 that describes that particular step in the
process. We call f the law of evolution. The law of evolution fully characterize the deterministic process.

Scientific privileging of deterministic processes. Deterministic processes play a special role in science because,
insofar we want to have theories that make prediction, we are going necessarily focus on deterministic processes. This
privileging is not due to nature per se: it is due to the practice of scientific investigation. We setup initial conditions and
measure results, not the other way around. The time asymmetry is built into the practice of science as a fundamental
trait. As such, it is likely to be taken as starting point, and cannot further be explained through scientific investigation
itself.

Reversibility. Conversely, we say a process is reversible over the system domains {D̄t}t∈T if given the snapshot
at one time we can always reconstruct the snapshot at all past times. Formally, let t1, t2 ∈ T such that t1 ≤ t2, for any
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x2 ∈ Xt2 ⊂ D̄t2 we can find an x1 ∈ Xt1 ⊂ D̄t1 such that x2 ≼ x1. In this case, all the evolutions that pass through x2
must have passed through x1. If x(t) is the snapshot trajectory in time, we have A(x(t)) ⊆ A(x(t −∆t)): the set of
compatible evolutions must stay the same or become smaller. This also means that the process entropy associated to
a snapshot cannot increase during reversible evolution:

Su(x(t)) ≤ Su(x(t −∆t)) (3)

since x(t) ≼ x(t −∆t) means x(t) t x(t −∆t) and µu(x(t)) ≤ µu(x(t −∆t)).
Law of inverse evolution. In a dual fashion, reversible processes allow us to write a law of inverse evolution. For

each x2 ∈ X2, the initial snapshot x1 ∈ X1 must be unique as all snapshots in X1 are incompatible with each other.
Therefore we can write a function g ∶X2 →X1 such that x2 ≼ g(x2) ≡ x1 that describes that particular inverse step in
the process. We call g the law of inverse evolution.

Determinism and reversibility. A deterministic and reversible process, then, will mean x1 and x2 are equivalent
and that A(x(t)) = A(x(t +∆t)): the set of evolutions remains the same. This also means that the process entropy
remains conserved:

Su(x(t)) = Su(x(t −∆t)) (4)

The fact that past and future snapshots are equivalent x(t) ≡ x(t+∆t) does not mean they are the same statement
in terms of the description at each time: it means there is an if-and-only-if relationship between the descriptions at
different times. For example, “at time t the position is q and the velocity is v” if and only if “at time t+∆t the position
is q + v∆t and the velocity is v”. The differential equation v̇ = 0 is a short hand for all such relationships.

Entropy increase and irreversibility. According to these definitions, entropy cannot decrease in deter-
ministic processes. Additionally, reversible process (that are also deterministic) will conserve entropy.
For non-deterministic processes this may not be the case, therefore this is not an absolute law. However, insofar we
want to write theories that give predictions, the result will apply. Therefore it is not that entropy never decreases,
it never decreases for the processes we are interested in: the ones where we are able to properly define systems and
make predictions. We can say that it is a fundamental law of scientific theories but not a fundamental law
of nature.

Reversibility vs retrodictability. If the process is deterministic and reversible we have that the inverse of law
of evolution f−1 = g is equal to the law of inverse evolution. It is possible for f to be invertible even if the system
is not reversible. In fact, we would have x1 ≡ f−1(x2) ≼ x2, which is not the same as x2 ≼ g(x2) ≡ x1: narrowness
is in the opposite direction. In other words, an invertible deterministic system is not necessarily reversible.
For example, consider a damped harmonic oscillator: the dynamics is in principle invertible (we can reconstruct the
trajectory) but it is not reversible (as the evolutions bunch together, finite precision knowledge of the initial conditions
gives us more information than the same finite precision knowledge of the final conditions). These types of distinctions
are crucial and they emerge naturally within the framework. It can be shows that this is possible only for systems
identified by continuous variables, and not when all variables are discrete.

TODO: picture with deterministic evolution merging ”streams” of evolutions, and detrev evolutions not merging

Symbol Name Meaning
t ∈ T Time parameter Time is treated as a real valued parameter

within the range T ⊆ R
D̄t ⊂ P̄ System domain The set of descriptions at a given time
Xt ⊂ D̄t Possible snapshots The set of descriptions that give a full ac-

count at time t; they correspond to the nar-
rowest statements within D̄t

x(t) ≼ x(t +∆t) Determinism Given the snapshot at one time we can pre-
dict the snapshot at future times

x(t) ≼ x(t −∆t) Reversibility Given the snapshot at one time we can re-
construct the snapshot at past times

TABLE III. System domain, snapshots, determinism and reversibility

2.6. System, states and state spaces

Systems. Lastly we need to answer the following question: how do we go from a set of descriptions to the definition
of a system? Under what conditions do the snapshot actually represent states? And why do we do it? The general
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idea is that, conceptually, we want to study the same object under different processes. That is, we want to say that
the same object X can be subjected to different process at different intervals of time, and we are able to switch
from one to the other. Note that this is not simply something we would like to do: it is a basic requirement to do
science. Process A, in fact, can be the reliable preparation of a sample, process B can be some interaction we want
to characterize, and process C can be the final measurement. What must happen, then, is that the description of the
object at each junction is independent from the choice of the previous/future processes and from other objects. In
other words, the description at the junction is about and only about the system at that time. This does not mean
that it is the full description. It must be, then, that we have at our disposal a process under which the object is
independent from the rest. We removed all correlations in time and with other systems. We call an object for which
this is possible a system.

Independence as requirement. Therefore independence is a requirement for the definition of a system:
we can talk about a system only insofar we have at our disposal a process under which the system is independent for
the rest, such that the description of the system is truly a description of the system, with no correlations. We can
speak of a chair as its own system because we have circumstances in which we can interact with the chair in a way
that does not affect the other chairs or the tables. The definition of a system, then, is conditional to the existence of
suitable processes.

What still needs to be clarified is the difference between the independence from other systems of the system coming
in or of the process itself. Suppose we have system X and Y whose state is identified by a single continuous variable.
If there is no correlation, all state combinations are possible, so the joint distribution is uniform over the whole plain.
Now suppose they are correlated so that that x = −y. The joint distribution is uniform on the diagonal. If we have
a process that acts and depends only on X, the two cases are indistinguishable since the marginal of x is uniformly
distributed in both cases. The density of evolutions, however, is different, so there is a renormalization. But for the
rest, the two cases are indistinguishable. So independence may not technically always map to factorization of the
measure, but it may need to be indistinguishable from factorization.

Independence leads to maximization of entropy. Note that the presence of correlations between the system
and the environment can only remove possible evolutions, not add them. Therefore independence is the case where the
evolution count is maximal. In other word, requiring independence is equivalent to requiring maximization of entropy.
Again note that this maximization of entropy is not due to some property of nature: it is due to the requirement of
wanting to define a system, an objects for which we can mix and match processes. Of all processes nature presents
us, we select those that decouple the world into separate systems, those that maximize entropy.

Relaxation processes and equilibria as independence. If we are to study systems, then, we must have at
our disposal a process that takes an object and removes all possible correlations, rendering it independent. Moreover,
this process must keep the system independent if it was already so. Therefore independent descriptions must be
equilibria of such process. In general, the definition of the system requires the existence of such processes, which we
call relaxation processes. States will be invariant, symmetries, of such processes.

System definition as object-environment relationship. Whether or not a particular set of attributes of an
object can be seen as an independent system is not an a priori feature of the object, but rather a relationship between
object and environment. This is not just because of independence, but also for the existence of the system itself. We
can talk about a ball, with its position and velocity, on the surface of the earth at 20 Celsius. On the surface of the
sun, we cannot talk about a ball. Therefore there must be a tight relationship between states, the processes defined
on the system and the object-environment boundary. The process cannot alter the boundary, the state space must
satisfy the constraints imposed by the boundary, the state space must be, as a whole, a symmetry of the processes.

System composition and its algebra. As we may want to describe systems, subsystems and their relationships,
it useful to note that the set of all possible systems is a Boolean algebra. The ordering of the lattice is given by
system inclusion. We say X ∈ Y if X is a subsystem of Y . We can convince ourselves that this is a partial order (i.e.
X ∈X, if X ∈ Y and Y ∈X then X = Y and if X ∈ Y and Y ∈ Z then X ∈ Z). The join X ∨Y is therefore the smallest
system that contains both and represents system composition. The meet X ∧ Y is the biggest system contained by
both and represent the common subsystem. The 1 represents the system that contains everything. The 0 represent
the null system, the one that contains nothing. The complement ¬X represents everything except for the system.

Carving up the world. Philosophers talk about a description of reality that is joint-carving meaning that reality
already contains divisions, prior to our investigation. This is an epistemological version of it: nature gives us access to
processes for which some systems are independent from the rest. It is the accessibility of these processes that allows
us to define systems, without them we cannot divide nature into parts. That is, if an object is really made of parts
but the process driving their evolution is such that the correlations can never be eliminated or controlled, the parts
cannot be defined as independent systems.

States and state spaces. A state is a snapshot for which the system is independent. That is, it is a
description of the system and only of the system. A state space X is the set of all possible states of the system.

States as junction points. States will then act as the juncture point between processes. If we switch from process
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A to process B at time t0, given the requirement of independence, the description of the system at that time must be
a state. If that’s the case, both processes can be characterized independently from each other.

States as equilibria of faster/smaller scale processes. As noted above, the subdomain must choose both a
physical scale and a time scale. The requirement of independence will mean that the description within that scale is
not relevant to the processes at hand. This cutoff is, in effect, part of the boundary of the system: we are still defining
what descriptions, which degrees of freedom, are under consideration and which are not. Note that this is consistency
of the idea of relaxation process, which must therefore not only remove the correlations from other objects but also
from internal degrees of freedom.

States as bundles of evolutions over short scale. In this light, is it better to understand states not as points
at an instant of time, but rather as bundles of evolutions over short scale that we “connected” throughout the process.

State entropy. When we join two processes, we need to reconcile the evolution count at the junction. This means
that the evolution count for states must be well defined and unique if we want to mix and match antecedent and
subsequent processes. Note that independence is precisely the condition needed for the count of evolutions to factorize
and process entropy to becomes additive. In this case, we can define a state entropy S(x) which is the process entropy
in condition of system independence. This means that all state spaces must be endowed with a structure that
define the state entropy.

The entropic nature of geometric structures of state spaces. The claim is that all geometric structures
that state spaces possess in different theories are precisely structures that keep track of the state entropy. This is
obvious in thermodynamics, where the equation of state in entropric form precisely map state entropy. In classical
mechanics, phase space is characterized by a symplectic structure, whose volume is used in statistical mechanics to
compute the entropy. Moreover, orthogonality in the symplectic structure characterize the independence of degrees of
freedom. In quantum mechanics, the inner product is connected to probabilities that, as we saw, are simply ratios of
counts of evolutions. Moreover, those same probabilities are used in statistical mechanics for the computation of the
entropy. Also note that these structure do not provide further characterization of the state space beyond the ability
to compute the evolution count and the entropy. They provide entropic and only entropic information.

Zero state entropy and the null state. As we saw before, entropy is a relative concept and therefore needs
a unit to be defined. What state should act as a reference and be assigned zero entropy? There is a natural choice.
Compositing with the null system X ∨ 0 = X returns the original system, therefore the entropy must not change.
Since the entropy is linear under system composition, the null system must have zero entropy. We should note that,
in principle, all systems should have a null state, which is the state where the system is not there. This case is
automatically independent and is therefore a state. This state should be given zero entropy and therefore can be
taken as the unit of our measure for the state space.

Null state as the lowest entropy state. It should also be intuitive that this state has to have the lowest entropy
of all. That is, saying the system is not there will give the finest level of description of the system. No other description
can be finer (except for the impossibility). This means that any other state can give a description of the system that
is, at best, as fine as the null state. This means that the the state entropy can never be negative. This is a more
general form of the third law of thermodynamics, in the same way that 2 is a more general form of the second law.

State entropy and time dependence. We should stress that the state entropy fixes the relative process entropy
between states at equal time in conditions of independence. In all other cases, or if these conditions changes throughout
the process, the connection between state entropy and process entropy is more complicated: the same description for
the same system will not correspond to the same count of evolutions. Consider a dynamical system with an attractor,
such as a damped harmonic oscillator. As time proceeds, more and more evolutions will converge to the attractor.
The same finite region around the attractor will correspond to more and more evolutions. In general, a process may
introduce correlations between different variables which influences the value of the process entropy for a specific
description.

State space as template. We should think of the state space as a template we can use to instantiate groups of
statements at each time. We have a state domain D̄X which contains all statement fragments like “the position of
the ball is between 2 and 3 meters” together with a surjective map ι ∶ D̄X × T ↠ D̄t that adds “at time t” for each
possible time. The map ι must be a surjection that preserves the logical structure (i.e. logical operations, verifiability,
narrowness, compatibility, ...) so that the basic logical relationships determined by the system itself are valid at all
times (i.e. “at time t the position of the ball is between 2 and 3 meters” ≼ “at time t the position of the ball is between
0 and 300 meters” for every t).

Note, though, that ι(⋅, t0) in general is not an isomorphism (i.e. a bijection that preserves the logical structure)
for two reasons. The first is that not all states will be available at every moment in every process. As we said
before, if the process is dissipative the set of possible states will become smaller. In that case, ι will map all the
inaccessible states to �, as they will be impossible. Therefore ι is not in general a bijection. The second reason is that
the statement fragments in D̄X represent only descriptions about the system itself and nothing else. In a particular
process, however, knowing the state of one system might tell us something about other system as well. The presence
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of correlations/coupling may mean that the precise knowledge of the degrees of freedom of the system may allow us
to tell something about the environment or the internal structure (i.e. microstate). Mathematically, ι may map to
statements that are narrower than the original fragment (e.g. we can have ι(“position of A is 1 meter”, t0) ≡ “at time
t0 the position of A is 1 meter and the position of B is -1 meter”).

State spaces are constructed. Though state spaces are template, conceptually they are not the starting point.
The state space of the system (i.e. the set of all possible complete descriptions of the system and only about that
system, independently of the process at hand) is something we need to construct. We find processes for which the
system decouples, and we elevate those descriptions to independent objects. This construction comes with a set of
assumptions about the system which are at the foundations of thermodynamics specifically and physics more in
general, and they need to be made explicit. The snapshots (i.e. best descriptions of a system at a time), instead, do
not require any additional assumptions and therefore are more general concepts.

A rich mathematical structure To sum up, the definition of a system, then, must define several things.

� A boundary, that tells us where the system ends and the environment begins
� A characterization of the boundary, that defines in what cases the system remains well defined
� A set of relaxation processes, that tells us how the system can be decoupled from the rest
� A set of possible independent descriptions (i.e. states), that can be characterized about the system given the

circumstances
� A set of possible evolutions for the system (i.e. the processes) under the given circumstances.

There is a lot more work to be done to fully characterize this structure mathematically, but the current physical theory
can serve as guidance. The point is that this structure has to serve as a general template that all physical theories
must follow. We need a general definition of states and processes of which classical mechanics, quantum mechanics,
thermodynamics and statistical mechanics are a specialization. The fact that the theories are, on the surface, so
different is actually a good thing as it makes it easier to understand what elements are specific to the theories and
what are more general.
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