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This paper presents ideas and progress towards an order theoretic framework that can be used as
a common foundation for geometric, measure theoretic and probabilistic concepts in the sciences.
This would address foundational questions such as: under what assumptions are standard tools like
calculus physically meaningful? How do geometric structures arise in physics? How can the idea of
physical dimension be properly captured mathematically? The working hypothesis is that geometric
and measure theoretic structures capture one and only one thing: how coarse or fine grained the
statements are within a scientific theory. Those structures should be recovered from a single binary
operator, which allows us to compare two statements and say whether one provides a finer level of
description than the other. Mathematically, fineness imposes a preorder on the algebra of statements
of a scientific theory. Measure theoretic and geometric notions will be recovered by picking a unit and
quantifying the degree of precision in terms of that unit: “the mass of the object is between 1 and
3 Kg” is half as precise as “the mass of the object is between 0 and 1 Kg”. The objective is to find
necessary and/or sufficient conditions for such constructions which can be given a straightforward
physical motivation.

This work is part of Assumptions of Physics (https://assumptionsofphysics.org), a project
that aims to identify a handful of physical principles from which the basic laws can be rigorously
derived.

1. INTRODUCTION

This paper presents the goal and the current status of our research. It is intended to gather early feedback, including
pointers to other relevant work. Feedback is welcome and encouraged.

The overall goal of Assumptions of Physics is to identify a handful of physical principles from which the basic
laws can be rigorously derived. We have already established that topologies and σ-algebras can be recovered from
requirements of experimental verifiability.[1–3] For similar ideas see also [4]. The next step is to understand the
underpinnings of geometric and measure theoretic structures (including probability) which are layered on top of
topologies and σ-algebras. As usual, a formal construction from scratch will force us to make explicit the physical
requirements that are baked into the use of the common concepts and provide us with a framework that is, hopefully,
still valid when those assumptions fail.

Note that often in physics, geometric structures are recovered from other geometric structures through the idea of
emergence. For example, substantial effort is put into constructing theories where space-time emerges from other more
fundamental geometric structures. This does not solve the problem: it simply pushes it backwards. We are interested
in the more fundamental problem of how the first geometric structure, and in fact any geometric structure, arises in
physics.

The idea is that while experimental verifiability keeps track of which statements in the theory are experimentally
verifiable, information granularity keeps track of which provide a finer level of description. The working hypothesis
is that this, and only this, is what geometric and measure theoretic structures capture: how coarse or
fine grained the statements are within a scientific theory. Finding the fundamental axioms associated to the
notion of information granularity is therefore the central problem.

To give a sense of how this would work, we start with our notion of a theoretical domain D̄, which is a σ-complete
Boolean algebra that represents a set of statements, a set of descriptions, for a physical system in a given context.
Mathematically, a Boolean algebra is also a lattice, and therefore already comes equipped with a partial order ≼
such that s1 ≼ s2 if s1 ∨ s2 ≡ s2. This partial order indicates whether one statement gives a narrower, more specific,
description than the other. For example:
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� “The position of the object is between 0 and 1 meters” ≼ “The position of the object is between 0 and 1 kilometers”
� “The fair die landed on 1” ≼ “The fair die landed on 1 or 2”
� “The first bit is 0 and the second bit is 1” ≼ “The first bit is 0”

In these cases, the first statement has to be “contained” in the second, which is more general.
We then suppose we have a way to compare any two statements and decide whether one provides a description at a

finer level of granularity. This defines an additional preorder t∶ D̄ × D̄ → B. Saying s1 t s2 means that the description
provided by s1 is finer, gives more information, is more precise, than the description provided by s2. For example:

� “The position of the object is between 0 and 1 meters” t “The position of the object is between 2 and 3 kilometers”
� “The fair die landed on 1” t “The fair die landed on 3 or 4”
� “The first bit is 0 and the second bit is 1” t “The third bit is 0”

In these cases, the first statement may not be contained or overlap with the second. Even though the statements
come from different disciplines (i.e. geometry, probability and information theory) they all work nicely with the same
notion of fineness.

Note that, conceptually, a statement is finer than another if it is true in fewer cases. Therefore the notion of fineness
is linked to the notion of “counting” of the possible outcomes. It should be no surprise, then, that the same concept is
compatible with the different disciplines above: geometric size quantifies the ways we can arrange objects; probability
theory quantifies the ratio of expected cases; information theory quantifies the different possible messages stored,
computed or transmitted through an information system. Therefore the common structure we propose is not simply
a mathematical pattern among disconnected structures: it is a single conceptual framework.

We found a few ideas from comparative probability useful, but our goal cannot be achieved with a single measure.
A single measure can only compare objects of finite measure. All objects with zero measure (or infinite measure) are
indistinguishable. For example, we want to say:

� s1 = “The horizontal position of the object is exactly 0 meters”
� s2 = “The horizontal position of the object is exactly 1 or 2 meters”
� s3 = “The horizontal position of the object is between 0.5 and 1.5 meters”
� s4 = “The horizontal position of the object is between 1.5 and 3.5 meters”
� s1 t s2 t s3 t s4
� s1 í s2 í s3 í s4

Therefore we need to construct a family of measures, each identified by picking a particular statement that acts as
a reference, as a unit. This provides a much richer structure, which is both interesting mathematically and more
scientifically useful.

As for geometry, geometric structures provide measures for different dimensionality by starting from a lowest
dimension (i.e. line distance for Riemannian geometry and surface area for symplectic geometry) and then constructing
higher dimensional measures through products. While we want to recover those cases as well, this is not general enough.
In physics there will be dimensions that are not directly comparable (e.g. pressure, volume, number of particles,
chemical potential) but are still comparable under appropriate composition (i.e. pressure times volume with number
of particles times chemical potential). We want to have a structure rich enough to capture these physical ideas (i.e.
systems of units) which is not typically done.

2. OVERVIEW

We now give a more detailed overview of the goal and status. This will also cover the conceptual understanding and
physical motivation, not just the mathematical aspects. Later sections will present both what has been established to
work and what not to work in full mathematical detail.

We were not able to find similar work in the literature.1 The closest is in the context of comparative probability[5, 6]
from which we have taken some mathematical ideas. The survey [7] contains some examples of different axioms which
may be very helpful. In general, the problem is that the preorder they typically use is essentially equivalent to the
probability measure they recover, while the whole point in our case, as mentioned in the introduction, is that the
preorder should give us a richer structure.

As we will see later, the notion of infinitesimals plays an important role. Therefore there may be overlap with ideas
in non-standard analysis, though we have not researched that literature.

1 If the reader has relevant suggestions, we would appreciate them.
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2.1. Fineness and granularity

We start with a σ-complete Boolean algebra D̄, which we call theoretical domain, that can be generated from a
countable subset, a countable basis. Conceptually, this represents all the statements that can be associated with an
experimental verification procedure. The full detail of why this is the correct abstraction is discussed in detail in our
previous work.[1] It is a property of this type of spaces that each statement s ∈ D̄ can be expressed as a disjunction
of possible cases, of the possibilities of the domain.2 Formally, each possibility is a minterm3 of the countable basis.
The theoretical domain can then equivalently be represented by a σ-algebra.4

A Boolean algebra is also a lattice, and therefore D̄ already comes with a partial order ≼ such that s1 ≼ s2 if
s1 ∨ s2 ≡ s2. We call narrowness this partial order as it describes whether a statement gives a narrower description of
another as we saw in the introduction. The narrowest statement in the domain is the impossibility � and the broadest
one is the certainty ⊺.5

Conceptually, narrowness allows us to say that a description is more refined than another only if the first is fully
contained in the second. It cannot compare descriptions that do not overlap, that are incompatible. That is why it is
not sufficient to quantify the granularity, the level of detail, of the description. The ability to compare the granularity
of the description of two statements, therefore, is captured by an additional binary relationship t we call fineness.6

The whole program can be summarized in the following question: what intuitive conceptual properties does fineness
have physically that, once properly formalized mathematically, allow us to recover measures, probability and geometric
structures?7

2.1.1. Necessary properties for fineness

The first properties are the ones we must expect fineness to have in all cases. At this point, there are three,
identified by DeFinetti[5] for comparative probability, that we believe are necessary and that work as simple and
intuitive starting points.

Boundedness. As we mentioned in the introduction, a description is finer than another if it can be true in fewer
cases. This intuitive notion is in general ill-defined except for two cases. A certainty ⊺ (e.g. “the position is between
minus infinity and plus infinity”) is true in all cases, therefore it must be the coarsest statement. An impossibility
(e.g. “the position is between 0 and 1 and also between 2 and 3”) is false in all cases, therefore it must be the finest
statement. This means that fineness must be uniquely bound by the impossibility and the certainty. Any contingent
statement (i.e. one that can in principle be either true or false) must be strictly between the two since there are some
cases in which it will be true and others in which it will be false. This is the first required property.8

Transitivity. Additionally, if s1 gives a finer description than s2 and s2 gives a finer description than s3 then it
must be that s1 gives a finer description than s3. This means that fineness is transitive, and this is the second required
property.

Offset monotonicity. Lastly, if we take two descriptions and we make them less precise “in the same way”, we
must have the same relationship in fineness. More precisely, suppose we have two descriptions s1 and s2 and we pick
a third description s that is incompatible9 with both (noted s � s1 and s � s2). The respective disjunctions s1 ∨ s and
s2 ∨ s will be “equally” broader than the original statements. Therefore we will want them to be “equally” coarser
as well. In other words, it must be that s1 t s2 if and only if s1 ∨ s t s2 ∨ s: fineness must be offset monotonic10 in
the sense that it is invariant if we add or remove a statement from both sides, and this is the third and last required
property.11

From these three properties, we can show the following:

Preorder: Fineness is a preorder over the theoretical domain D̄.
Monotonicity: Fineness respects narrowness: s1 ≼ s2 implies s1 t s2.
Equigranularity is an equivalence: Equigranularity ≐, the symmetrization of fineness, is an equivalence, and fine-

ness is a partial order of its equivalence classes. That is, fineness orders the levels of description.

2 For example, “the mass of the object is less than 1 Kg” is the disjunction (i.e. the logical OR) of all the statements of the form “the
mass of the object is exactly x Kg” where 0 ≤ x < 1.

3 A minterm is a disjunction in which each term appears once, either negated or not.
4 This conceptually maps perfectly to what one has in probability: a sample space (i.e. the set of possibilities) and a set of events (i.e. the

statements in the domain). The advantage of our “pointless” constructions is that we can treat domains, subdomains and composite
domains in the same manner.

5 In terms of the σ-algebra, narrowness corresponds to set inclusion, the certainty is the full set and the impossibility is the empty set.
6 In terms of the σ-algebra, fineness allows us to say that one set is “bigger” than another.
7 In terms of the σ-algebra, how do we go from being able to compare the size of sets to being able to quantify it?
8 In terms of the σ-algebra, the full set is strictly the biggest set and the empty set is strictly the smallest set.
9 Two statements are incompatible if they can’t both be true at the same time: their conjunction s1 ∧ s ≡ � is impossible. This is the

analogue of disjoint sets in a σ-algebra.
10 Some authors call this property “monotony”, which we don’t find descriptive. We prefer “offset monotonicity” as it makes it clear that

adding or removing a “constant” on both sides is a monotonic operation.
11 In terms of the σ-algebra, a set is smaller than another if and only if it is also smaller when we increase both sets with another disjoint

from the two.
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While we are not convinced these are sufficient properties to define fineness, we have not found other properties
that we believe to be necessary. This is still an open area.

2.1.2. Domain-specific properties for fineness

Domain-specific properties for fineness include properties that are desirable, but are known to fail in some cases.
These will be properties of a particular domain, rather than fineness itself.

Equigranularity of possibilities. Possibilities provide a complete characterization of a domain: if we know one
possibility to be true (e.g. “the mass of the photon is exactly 0 eV”), we know the truth value of all other statements
(e.g. “the mass of the photon is between x and y eV”). Therefore it is natural to assume that all possibilities are
equigranular. In fact, this is a necessary property if we want to have a unique measure when we take a possibility as
a unit.12 However, this property can be easily violated by creating a subdomain.

Suppose we have a uniform domain with three possibilities: red, green, blue. We can take a “color blind” subdomain
that cannot distinguish between red and green. This would have two possibilities: red/green and blue. This will not
be uniform. The idea is that if the domain is not uniform, the cases are not really describing “the same thing”: some
information is missing. Equigranularity of possibilities, then, is not a property of fineness itself, but a property of a
domain that is “well-posed”.

Totality and physical dimensions. If our objective is to construct a measure, totality is needed in the sense
that every statement (i.e. every Borel set of possibilities) needs to be comparable with every other if we are to assign
a unique number. However, statements whose size is defined in units of different physical dimensions (e.g. length,
pressure, mass) should not be comparable. Lack of totality, in fact, should be a feature that allows us to formally
construct a unit system.

For example, in phase space (i.e. in a symplectic manifold) we would expect points to be comparable and equigran-
ular: each state gives the same description. This means that we can compare sets of finite points. Finite areas are also
comparable to each other (through integration of the symplectic form), and are comparable to points: they will be
infinitely coarser. However, vertical lines (i.e. ranges in momentum alone) are not comparable to horizontal lines (i.e.
ranges in position alone). Symplectic geometry, in fact, gives a size to areas and not to lines.

Another counterexample comes from infinite ranges. Take the real line and consider the set of all positive numbers
and the set of all negative numbers: should they be comparable? If we say they are equal, then that would tell us that
there are the same number of cases before and after 0. This means that the space is not symmetric under translation.
If the real values represent distance between points, this is bad as it violates the idea that space is uniform. If the
real values represent charge, however, this would actually make sense: the idea that there are exactly the same values
for positive and negative charges does make sense, and the symmetry we are imposing is natural since zero is really
a special number. Therefore different choices of comparability for the same Borel algebra is actually a feature we do
not want to lose in general.

However, once we pick the unit, we should be able to find the “right” set of statements on which to create the
measure. Roughly speaking, two descriptions of the same units are “finitely comparable” in the sense that one gives
a finer description than the other by a finite factor. Descriptions of different units are either “infinitely comparable”
(e.g. areas are always bigger than lengths) or not comparable (e.g. position and momentum). One approach would be
to find the “largest set of statements mutually comparable in fineness that contain the unit”. In general, we have no
expectation that this would be unique. So one question would be: when is this set unique?

2.1.3. Unsettled properties for fineness

Boolean lattice. Granularity levels (i.e. equigranularity equivalence classes) form a bounded partially ordered set.
One wonders whether they form a lattice. Physically this would make sense: we would be saying that given a set
of statements S ⊆ D̄, we can always find a level of description that is the finest among all coarser descriptions than
all the statements (i.e. 
S) and a level of description that is the coarsest among all finer descriptions than all the
statements (i.e. �S). However, it is not clear whether this is required, something only to be imposed in some cases
or something that can be already proven.

Regardless, the map from a statement to its level of description (i.e. equivalence class in equigranularity), while
it is an order isomorphism and preserves the top and bottom, is not a lattice isomorphism. That is, it does not

12 The measure, in this case, is simply the counting measure and equigranularity of the possibilities plays a role similar to the principle of
indifference in classical probability.
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preserve the meet and join. Let us note ṡ = s/≐ the level of granularity of s. Now suppose that s1 ≐ s2 ≢ � and
s1 � s2 (recall � means incompatible). Then ṡ1 = ṡ2 ≠ �̇. Now suppose that s → ṡ is a lattice isomorphism. Then
�̇ = (s1 ∧ s2)/≐ = ṡ1 . ṡ2 = ṡ1 . ṡ1 = ṡ1, which contradicts the premise.

Addition. We also need to understand how to define the addition and subtraction. Conceptually, the addition of
two granularity levels ṡ1 + ṡ2 means returning the granularity level that can be achieved by taking the disjunction
s1 ∨ s2 of two incompatible statements s1 ∈ ṡ1 and s2 ∈ ṡ2. This, of course, is not possible if the statements are “bigger”
than “half” the space (e.g. s1 ≐ s2, s1 � s2 and s1 ∨ s2 ≡ ⊺). A more order theoretic definition would be to take all
possible disjuctions of v1∨v2 such that v1 ∈ ṡ1 and v2 ∈ ṡ2 and return the coarsest level of description. That is, the sum
is the least upper bound in fineness of all possible disjunctions. One should be able to prove that the incompatible
disjunction corresponds to that level of description.

It is not clear whether the axioms above are enough to show that the addition always exists. It may be that the
existence of the addition, or a premise that leads to it, needs to be added. It is not clear whether, physically, such
addition always makes sense, particularly in the context of incomparable descriptions (e.g. descriptions quantified in
different units).

Product. Another thing that needs to be defined/recovered is that independent domains lead to the product
of the measure. This means that there must be some compatibility condition between statement independence and
fineness. It is not clear whether this compatibility is already embedded in the given axioms or not. The issue is that,
in comparative probability, independence is only defined later in terms of the probability measure. In our framework,
we have already a notion of independence that is defined on statements and logic operation, which is based on the
idea of whether fixing the truth value of some statements will also fix the truth value of other statements.

Missing axioms. In many of our proofs, we ran into an issue of not being able to guarantee existence of certain
statements. Several of the definitions we want have the form “x holds if there exists statement y such that w.” However,
we have no axioms that guarantee the existence of any statements beyond ⊺ and �. In the case of an infinite collection
of possibilities, we have no way to guarantee existence of statements of various levels of fineness when all statements
in question are compatible with infinitely many possibilities.

To summarize, we may want to add something about existence of statements in equigranularity classes so as to
have no “gaps” (e.g. the order on D̄/≐ is complete). We may also want to say something about existence of enough
statements representing each equivalence class so that sum and product can be well-defined. For example, if s1 t s2,
we may want to say that there exists s′1 with s′1 ≐ s1 and s′1 ≼ s2, as well as s′′1 such that s2 ∧ s′′1 is minimal in some
sense (s2 � s′′1 if they do not fill the space). This is not at all guaranteed by the decomposition of statements into
possibilities, since cardinality does not help us here.

Bigger and smaller “halves”. One thing that appears to be missing is the following. Consider the following
domain with four possibilities {x1, x2, x3, x4}. Each statement is the disjunction of a set of possibilities and let us use
the lower indices to indicate them. For example, s12 = x1 ∨ x2. Now, suppose s12 u s34 and s14 u s23. The two pairs are
incompatible (disjoint) statements whose conjunction is the certainty. In a sense s14 is more than half the certainty
while s34 is less than half the certainty. So, we would expect s14 u s34. Yet, our axioms do not guarantee that. To prove
that, we wrote a program that constructed all possible relationships given the axioms, and that relationship was not
derived.

One may think we are then able to create a nonsensical situation, where s34 u s14. What happens is that now we
can apply offset monotonicity multiple times like so: s34 u s14 Ô⇒ s3 u s1 Ô⇒ s23 u s12. Therefore s12 u s34 u s14 u
s23 u s12. Which means s12 ≐ s34 ≐ s14 ≐ s23. Therefore, while we can’t derive the fact that the bigger halves are coarser
than smaller halves, if we try to force a smaller half to be coarser than a bigger half we actually get equal halves. That
is, if the two halves are comparable, then we must have at least that the bigger half is coarser than the smaller half.
This is interesting because, in this case, the mere assumption of comparability forces at least a specific relationship.

So the real issue is: does it make sense for those halves to not be comparable? It is still not clear one way or the
other.

2.2. A family of measures

The main goal is to understand under what conditions we can pick a statement u and find a unique measure
µu ∶ D̄ → R with the following properties:

Normalization: the value for the unit is one, µu(u) = 1.
Monotonicity: it is a monotonic function with respect to fineness; if s1 t s2 then µu(s1) ≤ µu(s2).
Finite additivity: if s1 � s2 then µu(s1 ∨ s2) = µu(s1) + µu(s2).

Countable additivity. Additionally, we want to understand when finite additivity can be extended to countable
additivity. In general, countable additivity will fail. Consider a space with countably many possibilities, all of them
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equigranular. If we take the certainty as a unit, each possibility is infinitely smaller, and therefore it must be assigned
a measure zero. Therefore, the sum (i.e. the disjunction) of infinitely many measure zero statements is one.

Equigranular possibilities. If a possibility is taken as a unit, then the equigranularity of possibilities is a sufficient
condition for a unique measure and it leads to the counting measure on the possibilities. This is strictly not necessary:
we could have a domain with 5 possibilities {x1, x2, x3, y1, y2} such that x1 ≐ x2 ≐ x3, y1 ≐ y2 and x1∨x2∨x3 ≐ y1∨y2. If
we took x1 as a unit, this would lead to a unique measure such that µ(x1) = µ(x2) = µ(x3) = 1 and µ(y1) = µ(y2) = 3/2.
This also tells us that we may not be really interested in necessary conditions, since these cases are contrived. Rather,
we are interested in sufficient conditions that can be well justified from the physics.

Lack of reverse monotonicity. Monotonicity only works in one direction. If a statement describing an area is
taken as unit, all statements about lines, points and countable sets of both are going to be measure zero. Therefore
equal measure does not mean equal fineness. This is why fineness can generate a family of measures: it has more
information than a single one. When we pick a unit, then, the measure has to “collapse“ the equivalence classes of
equigranularity appropriately. This is tightly linked with a notion of infinitesimal (i.e. the ordering over the level of
granularity is not Archimedean, while the real numbers are) which we will see in the next subsection. To address this
collapse in a controlled way, the idea is to proceed in the following way:

1. pick a unit u and define the notion of infinitesimal
2. define the preorder ≤u and the equivalence =u that compares levels of description up to infinitesimals
3. show that ≤u is order isomorphic to the reals
4. show that we can pick a particular isomorphism that respects linear additivity.

2.2.1. Infinitesimals and finite comparison

Archimedean property. The measure zero sets are related to the notion of infinitesimals and the Archimedean
property. The Archimedean property is typically discussed in terms of linearly ordered groups and fields. Roughly

speaking, if we pick an element y, an element x is infinitesimal with respect to y if
n

∑
i=1
x < y for any n. The group is

Archimedean if no element is infinitesimal with respect to another.
The (positive) real numbers are Archimedean. On the other hand, consider the lattice of subsets of the real numbers.

If we use disjoint union as addition, the lattice is not Archimedean: the singletons will be infinitesimals with respect
to any finite interval. A measure will therefore need to map a non-Archimedean structure (i.e the sets) into an
Archimedean one (i.e. the positive reals). Infinitesimals therefore need to be mapped to zero. Note that for the
measure to be countably additive, we need to have that the countable sum of infinitesimals is still infinitesimal. This
will not be true in general: a set with finitely many integers is infinitesimal with respect to the set of all integers; yet
the set of all integers is the disjoint union of countably many finite sets of integers.

Note that on Page 21 de Finetti[5] specifically says that P (E) ≥ P (E′) implies E ≥ E′ but not vice-versa. And
that we can have P (A) = P (B) = 0 even if A < B if A is impossible and B is not. So, the ordering he has in mind is
fineness for us. And then he says that this means that his 4 postulates give a non-Archimedean structure. But you
can make it Archimedean by ignoring the probabilities that are “infinitesimally small”: those that multiplied by a
number, however big, will never become the certainty. On the other hand, Villegas[6] starts already with a preorder
where the infinitesimals are equal to the empty set. This maps to ≤u defined later, where the comparison is done up
to infinitesimals.

Definition of infinitesimals. The first issue is to find the correct definition to extend this concept to partially
ordered sets. The addition discussed above (i.e. the disjoint disjunction of statements) should play the role of the
group operation. Conceptually, a statement s is infinitesimal with respect to another u if for any n we can find a finite
set of n equigranular incompatible statements whose disjunction is finer than u. That is, we need infinitely many
statements equigranular to s to cover a statement of the same granularity as u.

The main issue here is that, since the ordering is potentially not total, it is not clear how one can prove the existence
of said sets of statements even in the simplest cases. Therefore we have to find a definition that works well also in the
case of non-comparability.

Countable and uncountable infinitesimals. Assuming those issues are solved, infinitesimals come in two types:
countable and uncountable. A countable infinitesimal will be such that the disjoint disjunction of countably many
equigranular statements may be bigger than the unit. This is the case where, in the end, the measure will only be
finitely additive: infinitely many zero measure elements will sum to a finite element. If all infinitesimals with respect
to the unit are uncountable, instead, countably many zero measure elements will still form a zero measure element.

This insight may give us a way to define “finite” and “infinite” elements in an absolute way. A finite element has no
countable infinitesimal. For example, take the unit interval over the reals and consider the standard Lebesgue measure
over the Borel sets (which would correspond to our theoretical domain). All sets of measure zero are uncountable
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infinitesimals with respect to the unit: since the measure is countably additive, any disjoint union of countably many
measure zero sets is going to be measure zero, therefore it will not be as big as the unit. Naturally, if we take
uncountably many sets (i.e. all the singletons) we can cover the whole unit. Conversely, the full real line can be
covered by countably many sets of unit size. While the unit interval is infinitesimally small with the respect to the
whole line, it is a countable infinitesimal. This definition of “finiteness” may map to physical requirements much
better than, for example, the topological notion of compactness.

Once a notion of infinitesimals is well defined, we would define a preorder ≤u and an equivalence relationship =u
that compares the level of description of the statements up to infinitesimals.

2.2.2. Recovering bounded measures

The next step is to understand how the properties of ≤u would compare to the requirements set by, for example
Villegas [6]. In the context of comparative probability, there are theorems that allow one to go from a preorder to
a probability measure. The idea would be to reuse, as much as possible, the ideas from that literature. Once we
pick a unit u, we can restrict ourselves to all statements narrower than u. At that point, what we have has all the
mathematical properties of a probability measure, since the biggest element, u, has to have measure one.

Countable additivity. One issue will be the problem of countable infinitesimals, which are incompatible with a
countable measure. Therefore one of the assumptions in comparative probability will effectively exclude this case. We
need to understand how that works, so that we can adapt the proofs and allow for only finitely additive measures. The
hope is that if we pick a unit for which all infinitesimals are uncountable, then one can demonstrate the requirements
for the previous theorems.

Measure domain. The other issue is that the measure will not be, in general, on the whole domain D̄, but on
a subset D̄u that must be totally comparable under ≤u. It is not clear how to recover this set. It may be that the
equivalence classes of =u will make our job easier: all infinitesimals will end up in the same equivalence class as the
impossibility, regardless of their comparability in fineness. Therefore incomparable statements may be comparable in
≤u if they can be compared up to an infinitesimal.

The goal here is to solve the above problems to find the prerequisites for the following proposition. Given a statement
u ∈ D̄ we can define a maximal set of mutually comparable statements in ≤u that contains u, upon which we can define
a unique µu ∶ D̄u → R such that:

Normalization: the value for the unit is one, µu(u) = 1.
Order isomorphism: s1 ≤u s2 if and only if µu(s1) ≤ µu(s2).
Finite additivity: if s1 � s2 then µu(s1 ∨ s2) = µu(s1) + µu(s2).

Moreover, if u has no countable infinitesimals (or other more restrictive conditions), µu is countably additive.

2.2.3. Extending the measures

Once we know how to construct measures on the sub-algebra of statements narrower than the unit, we should be
able to “stitch them together” in the following way.

1. Prove that if v ≼ u then µu(w) = µu(v)µv(w) for all w ≼ v. There are going to be two cases. If v is infinitesimal
with respect to u then µu(w) is zero and µu(v) is zero. If not, we know that the infinitesimals with respect to u
are exactly the infinitesimals with resepect to v, so the equivalence classes of =u and =v are the same. At that
point, one should be able to use the properties of the measures to prove the rest.

2. Given two statements u ≼ v, we extend the measure on u by defining µu(v) = 1/µv(u). If µv(u) = 0 then µu(v) = ∞.
3. To extend the measure on all other statements. Given two statements v and u we can construct the measure
µu∨v. We have µu(v) = µu(u ∨ v)µu∨v(v).

One issue will be, again, proving the consistency of comparability with different units since all the domains D̄u do
not contain all the statements.
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3. CURRENT ATTEMPT

3.1. Basic fineness definitions

Definition 1. A theoretical domain D̄ is a σ-complete Boolean algebra that can be generated by a countable subset.
We call narrowness the partial order of the algebra, that is x ≼ y when x∨ y = y. We say x ∈ D̄ is a possibility if it
is the immediate successor of the impossibility �. That is, � ≺ x and there is no s ∈ D̄ such that � ≺ s ≺ x.

The fact that the σ-algebra is generated by a countable set means it is separable. It also means that each element
can be constructed as a disjunction of a set of possibilities. For the full definitions, see [1].

Definition 2. Fineness is a binary relationship t∶ D̄ × D̄ → B with the following properties:

� boundedness: for each contingent statement s ∈ D̄ we have � ⋖ s ⋖ ⊺
� transitivity: if s1 t s2 and s2 t s3 then s1 t s3
� offset monotonicity: if s � s1 and s � s2 then s1 t s2 if and only if s ∨ s1 t s ∨ s2.

Definition 3. We say s1 is equigranular to s2 (noted s1 ≐ s2) if s1 t s2 and s2 t s1. We say s1 is strictly finer
than s2 (noted s1 ⋖ s2) if s1 t s2 but not s2 t s1.

Proposition 4. Fineness obeys the following properties:

1. if s � s1 and s � s2 then s1 ⋖ s2 if and only if s ∨ s1 ⋖ s ∨ s2 (these two tell us that offset monotonicity can be
extended to strict fineness and equigranularity)

2. if s � s1 and s � s2 then s1 ≐ s2 if and only if s ∨ s1 ≐ s ∨ s2
3. if s1 ≼ s2 then s1 t s2 (these three tell us fineness and narrowness are monotonically ordered)
4. if s1 ≺ s2 then s1 ⋖ s2
5. if s1 ≡ s2 then s1 ≐ s2
6. s1 t s2 if and only if s1 ∧ ¬s2 t s2 ∧ ¬s1 (these three tell us the region of overlap does not matter)
7. s1 ⋖ s2 if and only if s1 ∧ ¬s2 ⋖ s2 ∧ ¬s1
8. s1 ≐ s2 if and only if s1 ∧ ¬s2 ≐ s2 ∧ ¬s1
9. if s1 t s2 then ¬s2 t ¬s1 (these two tell us that fineness works well with negation)

10. if s1 ⋖ s2 then ¬s2 ⋖ ¬s1
11. if ⊺ t s then ⊺ ≼ s and therefore s ≡ ⊺ (these two tell us that fineness can recover narrowness for certainties and

impossibilities)
12. if s t � then s ≼ � and therefore s ≡ �
Proof. For 1, let s � s1 and s � s2. Suppose s1 ⋖ s2, then s1 t s2 and s1 í s2. By offset monotonicity we have

s∨ s1 t s∨ s2 and s∨ s1 í s∨ s2. Therefore s∨ s1 ⋖ s∨ s2. Conversely, if s∨ s1 ⋖ s∨ s2 then s∨ s1 t s∨ s2 and s∨ s1 í s∨ s2.
By offset monotonicity s1 t s2 and s1 í s2, which means s1 ⋖ s2.

For 2, now suppose s1 ≐ s2, then s1 t s2 and s1 u s2. By offset monotonicity we have s ∨ s1 t s ∨ s2 and s ∨ s1 u s ∨ s2.
Therefore s∨ s1 ≐ s∨ s2. Conversely, if s∨ s1 ≐ s∨ s2 then s∨ s1 t s∨ s2 and s∨ s1 u s∨ s2. By offset monotonicity s1 t s2
and s1 u s2, which means s1 ≐ s2.

For 3, suppose s1 ≼ s2. Then ¬s2 � s2 and ¬s2 � s1. Since fineness is uniquely bounded, we have ¬s2 ∨ s1 t ⊺. We have
⊺ ≡ ¬s2 ∨ s2 u ¬s2 ∨ s1. By offset monotonicity we have s2 u s1.

For 4, suppose s1 ≺ s2. Then ¬s2 ∨ s1 is a contingent statement and, since fineness is uniquely bounded, ¬s2 ∨ s1 ⋖
⊺ ≡ ¬s2 ∨ s2. By 1 we have s1 ⋖ s2.

For 5, suppose s1 ≡ s2. Then s1 ≼ s2 and s2 ≼ s1, which means s1 t s2 and s1 t s2 and therefore s1 ≐ s2.
For 6, note that s1 ≡ (s1 ∧ ¬s2) ∨ (s1 ∧ s2), s2 ≡ (¬s1 ∧ s2) ∨ (s1 ∧ s2) with s1 ∧ s2 � s1 ∧ ¬s2 and s1 ∧ s2 � ¬s1 ∧ s2. By

offset monotonicity, s1 t s2 if and only if s1 ∧ ¬s2 t ¬s1 ∧ s2.
For 7 and 8, use 1 and 2 respectively in the final step.
For 9, note that s1 ∧ ¬s2 ≡ (¬s2) ∧ ¬(¬s1) while ¬s1 ∧ s2 ≡ ¬(¬s2) ∧ (¬s1). We have s1 t s2 if and only if (by 6)

s1∧¬s2 t ¬s1∧s2 if and only if (by the equivalence) (¬s2)∧¬(¬s1) t ¬(¬s2)∧(¬s1) if and only if (by 6 again) ¬s2 t ¬s1.
For 10, use 7 whenever 6 was used.
For 11, suppose ⊺ t s. By unique boundedness, s can neither be contingent nor impossible. Therefore s must be

certain.
For 12, suppose s t �. By unique boundedness, s can neither be contingent nor certain. Therefore s must be

impossible.

Proposition 5. Fineness is a preorder.
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Proof. Let s ∈ D̄. Since s ≼ s, by 4.3 s t s and therefore fineness is reflexive. By 2 fineness is also transitive and
therefore is a preorder.

Proposition 6. Other properties satisfied by fineness:

1. if s1 � s2 and v1 � v2, then s1 t v1 and s2 t v2 imply s1 ∨ s2 t v1 ∨ v2.
2. (monotony as in Villegas) if v1 � v2, then s1 t v1 and s2 t v2 imply s1 ∨ s2 t v1 ∨ v2.

Proof. For 1, using the diagram as an aid, let us decompose the four statements into the disjunction of eight pairwise
incompatible statements. We have

� v1 ≡ w1 ∨w2 ∨w8

� v2 ≡ w4 ∨w5 ∨w6

� s2 ≡ w2 ∨w3 ∨w4

� s1 ≡ w6 ∨w7 ∨w8

where

� w1 ≡ v1 ∧ ¬s1 ∧ ¬s2
� w2 ≡ v1 ∧ s2
� w3 ≡ s2 ∧ ¬v1 ∧ ¬v2
� w4 ≡ v2 ∧ s2
� w5 ≡ v2 ∧ ¬s1 ∧ ¬s2
� w6 ≡ v2 ∧ s1
� w7 ≡ s1 ∧ ¬v1 ∧ ¬v2
� w8 ≡ v1 ∧ s1

Since all {wi} are pair-wise incompatible, offset monotonicity allows one to remove or add the same statement on
both sides of a fineness relationship. Therefore

� v1 u s1 Ô⇒ w1 ∨w2 ∨w8 u w6 ∨w7 ∨w8 Ô⇒ w1 ∨w2 u w6 ∨w7 Ô⇒ w1 ∨w2 ∨w5 u w5 ∨w6 ∨w7

� v2 u s2 Ô⇒ w4 ∨w5 ∨w6 u w2 ∨w3 ∨w4 Ô⇒ w5 ∨w6 u w2 ∨w3 Ô⇒ w5 ∨w6 ∨w7 u w2 ∨w3 ∨w7

� w1 ∨w2 ∨w5 u w5 ∨w6 ∨w7 u w2 ∨w3 ∨w7 Ô⇒ w1 ∨w2 ∨w5 u w2 ∨w3 ∨w7 Ô⇒ w1 ∨w5 u w3 ∨w7

Finally w1 ∨w5 u w3 ∨w7 Ô⇒ w1 ∨w2 ∨w4 ∨w5 ∨w6 ∨w8 u w2 ∨w3 ∨w4 ∨w6 ∨w7 ∨w8 Ô⇒ v1 ∨ v2 u s1 ∨ s2.
For 2, let ŝ2 = s2 ∧ ¬s1. We have s1 � ŝ2 and ŝ2 t s2 t v2 since ŝ2 ≼ s2. By 1, we have s1 ∨ ŝ2 t v1 ∨ v2. But since

s1 ∨ ŝ2 ≡ s1 ∨ (s2 ∧ ¬s1) ≡ (s1 ∨ s2) ∧ (s1 ∨ ¬s1) ≡ s1 ∨ s2, we have s1 ∨ s2 t v1 ∨ v2.
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Conjecture 7. Other properties that show how the most you can broaden something within an equigranular equivalence
class is by a disjunction with something incompatible.

� if s1 � s2, v1 � v2 and s2 ≐ v2, then s1 t v1 if and only if s1 ∨ s2 t v1 ∨ v2.
� if v1 � v2, v2 ≐ s2, and s1 t v1, then s1 ∨ s2 t v1 ∨ v2.

Proposition 8. Equigranularity is an equivalence relationship.

Proof. It is an equivalence relationship because it is the symmetrization of a preorder. Since fineness is reflexive then
equigranularity is also reflexive: for all s ∈ D̄ s t s and therefore s ≐ s. Since fineness is transitive then equigranularity
is also transitive: s1 ≐ s2 ≐ s3 means s1 t s2 t s3 therefore s1 t s3 but also s3 t s2 t s1 therefore s3 t s1 and finally
s1 ≐ s3. Additionally, equigranularity is reflexive by definition and is therefore an equivalence relationship.

Definition 9. Let D̄/≐ be the equivalence classes of equigranularity. We call granularity level an equivalence class

of equigranularity. Let (⋅)/≐ ∶ D̄ → D̄/≐ be the map from a statement to its granularity level, which we also note ṡ = s/≐.
We say ṡ is the granularity level of s.

Proposition 10. The function (⋅)/≐ is an order homomorphism.

Proof. Let s1, s2 ∈ D̄. Suppose s1 ≼ s2 then by 4.3 s1 t s2 and therefore s1/≐ t s2/≐. Then (⋅)/≐ is an order homomor-
phism.

Remark. Regardless of whether D̄/≐ is a lattice, (⋅)/≐ can never be a lattice homomorphism. It will be crucial that two
equigranular statements can be incompatible, and this is in contradiction with (⋅)/≐ being a lattice homomorphism.
Let us note ṡ = s/≐ the level of granularity of s. Now suppose that s1 ≐ s2 ≢ � and s1 � s2. Then ṡ1 = ṡ2 ≠ �̇. Now suppose
that s→ ṡ is a lattice isomorphism. Then �̇ = (s1 ∧ s2)/≐ = ṡ1 . ṡ2 = ṡ1 . ṡ1 = ṡ1, which contradicts the premise.

Remark. We claim there exist domains which have all possibilities equigranular but fineness is not a total order.
Suppose we have a theoretical domain in bijection with the power set of the natural numbers, P(N). The partial order
of narrowness may be given by the ordering of the power set by set containment, and the possibilities (which also
serve as a countable generating set) are given by N. The hypotheses of the fineness relation (Definition 2) are satisfied
if we order contingent statements by cardinality, with the additional requirement that infinite strict subsets of N are
considered strictly finer than the certainty N ∈ P(N). All finite sets will be totally (pre)ordered, but infinite sets will
not be ordered. We note that one could just say that s1 t s2 for every pair of infinite contingent statements s1, s2, but
even if we remove those from the relation t, the axioms are still satisfied, and the (pre)order is not total.

Definition 11. A theoretical domain D̄ is uniform if fineness has the following additional properties:

� totality: for all s1, s2 ∈ D̄ either s1 t s2 or s2 t s1
� uniformity: all possibilities are equigranular.

Proposition 12. Let D̄ be a theoretical domain. If all possibilities are equigranular, then the fineness class of state-
ments compatible with only finitely many possibilities is determined by the number of possibilities with which they are
compatible.

Proof. Assume all possibilities are equigranular and let s1 and s2 be compatible with finitely many possibilities. We
show that if s1 is compatible with at least as many possibilities as s2, then s2 t s1. We proceed by induction on N ,
the number of possibilities compatible with s1. The case of N = 1 follows from equigranularity of possibilities. Now
suppose the claim holds for some N . Let s1 = p1 ∨⋯ ∨ pN+1 and s2 = q1 ∨⋯ ∨ qm be statements compatible with only
finitely many possibilities pi, i = 1, . . . ,N + 1 and qj , j = 1, . . . ,m respectively, where m ≤ N + 1.

Consider first the case where m ≤ N . Then s2 t p1 ∨ ⋯ ∨ pN ⋖ p1 ∨ ⋯ ∨ pN ∨ pN+1 = s1, so s2 t s1. Next, suppose
m = N + 1. Write s′1 = p1 ∨ ⋯ ∨ pN and s′2 = q1 ∨ ⋯ ∨ qN . We have already that all disjunctions of N possibilties
are equigranular, so s′1 ≐ s′2. Possibly by rearranging the order of the possibilties in the disjunction, we may assume
qN+1 � s′1 and qN+1 � s′2. By Proposition 4, we have s1 ∨ qN+1 ≐ s2. Similarly, since pN+1 ≐ qN+1, we have s1 ≐ s′1 ∨ qN+1.
We conclude that s1 ≐ s2.

Corollary 13. Let D̄ be such that all possibilities are equigranular. Let x ∈ D̄ be a possibility. Then there exists
a unique measure µx ∶ D̄ → R ∪ {+∞} which corresponds to the counting measure of possibilities compatible to the
statement.

We expect the following to not be provable from the given axioms:

Desideratum 14. Let D̄ be uniform. Let s1, s2 ∈ D̄ such that s1 ⋖ s2. Then there exists s ∈ D̄ such that s ≼ s2 and
s ≐ s1.
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However, it would be nice to understand why as it would give us insights into which additional premises are
needed. The idea is that we can always “move” a statement to an equigranular one to sit within any other (coarser)
statement. This would allow us to make use of various properties of narrowness. Interestingly, this would not give
additional insight into limiting behaviors, as equigranular sequences may have vastly different limits (and so “moving”
a sequence could drastically change the equigranularity class of the limit).

3.2. Infinitesimals

The following is an attempt to define infinitesimal in a way that puts the least constraints on fineness.

Definition 15. Let u, s ∈ D̄ such that u ≠ �. Then s is infinitesimal with respect to u if for any natural number n
we can find a set of n statements {si}ni=1 such that:

1. s t si for all i
2. si � sj for all i ≠ j
3.

n

⋁
i=1

si t u

In words, s is infinitesimal with respect to u if for any number, there is a disjunction of that many broader mutually
incompatible statements si that is finer than u.

Remark. Note that we do not require the si to be equigranular to s. Also note that, with this definition, a statement
can fail to be infinitesimal simply because one cannot find enough statements comparable to both s and u.

Corollary 16. The impossibility � is an infinitesimal with respect to any u ∈ D̄.

Proof. Let u ∈ D̄ and consider {si}ni=1 where si ≡ � for all i. Then � t � ≡ si for all i. Since � � �, si � sj for all i and

j. Lastly,
n

⋁
i=1

si ≡ � t u. This means that {si}ni=1 realizes infinitesimality for �, which is an infinitesimal of u.

Definition 17. Let s,u ∈ D̄ be two statements such that s t u. We say that they are finitely comparable to each
other if we can find a finite set {si}ni=1 such that si t s for all i ≤ n and u t ⋁n

i=1 si.

Proposition 18. If two statements are finitely comparable then they cannot be infinitesimals with respect to each
other.

Proof. Suppose s and u are finitely comparable. Then we can find a set of n statements {si}ni=1 such that si t s for
all i ≤ n and u t ⋁n

i=1 si. Now suppose we have a set of statements {ti}ni=1 such that s t ti for all i and ti � tj for all
i ≠ j. Then we also have si t s t ti for all i. By 6 we have ⋁n

i=1 si t ⋁n
i=1 ti and therefore u t ⋁n

i=1 si t ⋁n
i=1 ti. Therefore

we cannot find a set of n statements that satisfy the definition of infinitesimal and therefore s is not an infinitesimal
with respect to u.

Proposition 19. Let s ∈ D̄ be an infinitesimal with respect to u ∈ D̄. Then any v t s is also an infinitesimal with
respect to u.

Proof. Since s is an infinitesimal with respect to u, for any n we can find a set of statements {si}ni=1 that realizes its
infinitesimality. We have v t s t si for all i. The other two properties do not depend on s. Therefore {si}ni=1 realizes
infinitesimality for v as well so v is an infinitesimal with respect to u.

Corollary 20. The conjunction of two infinitesimals with respect to u is infinitesimal with respect to u.

Proof. Let v1, v2 ∈ D̄ be infinitesimal with respect to u. Since v1 ∧v2 ≼ v1, v1 ∧v2 t v1 and therefore v1 ∧v2 by 19.

Proposition 21. The disjunction of two infinitesimals with respect to u that are comparable13 to each other is
infinitesimal with respect to u.

13 Is comparability required? Can it be proved one way or another?
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Proof. Let v,w be infinitesimal with respect to u. Without loss of generality, suppose v t w. Let n > 0 be a natural
number. Let {wi}2ni=1 be a collection realizing infinitesimality for 2n for w. Define sj = wj ∨wj+n for j = 1, . . . , n. Notice
that the sj ’s are mutually incompatible, and their disjunction must be finer than u. Further, since v t w we have that
v t wi for all i. It follows that:

v ∨w t wj ∨wj+n = sj

for all j = 1, . . . , n. Thus the collection {sj}nj=1 realizes v ∨w being infinitesimal with respect to u for n. We conclude
that v ∨w is infinitesimal with respect to u.

Proposition 22 (Infinitesimality is consistent with fineness). Let u, v be statements such that v t u. Let s be an
infinitesimal with respect to v. Then s is infinitesimal with respect to u.

Proof. Let n > 0 be a natural number, and let {si}ni=1 be as in the definition of infinitesimal for s with respect
to v. Then {si}ni=1 also satisfies the requirements for infinitesimal with respect to u. The first two requirements are
unchanged, and the third is easy to see:

n

⋁
i=1

si t v t u

Corollary 23 (Infinitesimality is consistent with narrowness). Let u, v be statements such that v ≼ u. Let s be an
infinitesimal with respect to v. Then s is infinitesimal with respect to u.

Proof. Since v ≼ u implies v t u, proposition 22 applies.
We wish to also show some form of compatibility in the reverse direction. That is, if we shrink by a “finite” amount,

the sets which were previously infinitesimal should remain so (of course, if we shrink by an “infinite” amount, e.g. by
dropping a dimension, previously infinitesimal sets may no longer be so).

Proposition 24. Let D̄ be uniform. Let u, v ∈ D̄ be statements such that v is not infinitesimal with respect to u. Let
s be a statement s ≼ v such that s is infinitesimal with respect to u. Then s is infinitesimal with respect to v.

Proof. Note: the use of totality is highlighted as we would like to, if possible, remove it.
Let u, v, and s be as in the Proposition statement. We will show that s is infinitesimal with respect to v. To do so,

we will show that for any n > 0, we can find a set of n statements {si}ni=1 such that:

1. s t si for all i
2. si � sj for all i ≠ j
3.

n

⋁
i=1

si t v

We will show this for arbitrary n, which will be sufficient to prove that s is infinitesimal with respect to v.
First, since v is not infinitesimal with respect to u, there exists some N > 0 such that for any set of N statements,

at least one of the conditions of infinitesimality of v with respect to u fails.
Let n > 0. Let {si}nNi=1 be a set of n ⋅ N statements realizing infinitesimality of s with respect to u (i.e. they are

mutually incompatible, broader than s, and their disjunction is narrower than u).
By totality of t14, we may assume the collection {si}nNi=1 is ordered by fineness (s1 t s2 t ⋯). Consider the finest

n statements, that is, consider the collection {si}ni=1. We will show that this collection satisfies the conditions for s
being infinitesimal with respect to v for n statements.

By construction, this satisfies properties 1 and 2 for infinitesimality of s in v, since it is a subset of a collection
which already satisfied those properties.

Now suppose it fails property 315, that is, suppose

n

⋁
i=1

si ⋗ v.

We will show that this will lead to a contradiction by implying that there is a collection of statements of size N
realizing v being infinitesimal with respect to u.

14 What we needed here is that there is a partition of the collection into N sets of size n such that for one of them, their disjunction is
finer than each of N − 1 disjunctions of the other subsets in the partition.

15 We will use totality since we need ¬(x ⋖ y) Ô⇒ x u y.



13

Consider now the collection of N statements {aj}Nj=1 defined by

aj =
nj

⋁
i=n(j−1)+1

si.

These statements are built from the collection {si}ni=1 by taking N disjunctions each consisting of n of the statements.
Notice that a1 is the disjunction of the collection {si}ni=1 considered above.

First, this collection is mutually incompatible, since it is made up of disjunctions of mutually incompatible state-
ments. This is property 2 for v being infinitesimal with respect to u.

Next, these must satisfy property 1 for v being infinitesimal with respect to u. To see why, notice that by our
assumption, we have a1 ⋗ v, and by construction, we have aj u a1 for all j = 1, . . . ,N , and so v t aj for all j = 1, . . . ,N .

Finally, they also must satisfy property 3:

a1 ∨⋯ ∨ aN =
nN

⋁
i=1

si t u.

Thus, this new collection violates the assumption that no set of N statements satisfies all three properties for v
being infinitesimal in u.

By totality of t,16 we conclude that we must have
n

⋁
i=1

si t v as required, and so the collection {si}ni=1 realizes s

being infinitesimal with respect to v for n statements. Since n was arbitrary, it must be the case that s is infinitesimal
with respect to v.

3.3. Comparision and equivalence at u scale

The general idea is to collapse the preorder given by fineness t so that statements that are different up to an
infinitesimal are equal.

Definition 25. Let s1, s2 ∈ D̄. We say s1 is equivalent to s2 at u scale, noted s1 =u s2, if we can find v1, v2 ∈ D̄ that
are infinitesimal with respect to u such that s1 ∨ v1 ≐ s2 ∨ v2.

When the definitions and axioms are solidified, the following will be essential:

Desideratum 26. Equivalence at u scale is an equivalence relation.

Remark. For reflexivity, let s ∈ D̄. We have s ∨ � ≡ s ∨ �. Since � is an infinitesimal for all u, s =u s. For symmetry,
note that the definition itself is symmetrical.

Transitivity is unclear. Let s1 =u s2 =u s3. Then we can write s1∨v1 ≐ s2∨v2 and s2∨w2 ≐ s3∨w3. If the infinitesimals
were incompatible we would have s1 ∨ v1 ∨ w2 ≐ s2 ∨ v2 ∨ w2 ≐ s3 ∨ w3 ∨ v2. If the infinitesimals were comparable, by
proposition 21 we would have that v1 ∨w2 and w3 ∨ v2 are infinitesimals and therefore s1 =u s3.

If we assume a uniform domain, we would have totality and we may also be able to show that incompatible
infinitesimals can always be found. It may be that totality is not needed for proposition 21. It may be that we need
to amend the definition of infinitesimals, such that the disjunction of two infinitesimals is an infinitesimal. We could
also force the transitivity, even if the disjunction of two infinitesimals is not an infinitesimal. This would be like saying
that, yes, in principle the assertions correspond to different granularity levels, but we are not to distinguish between
them because the difference is effectively zero. Understanding which options are best requires more work.

Another essential property of equivalence at u scale is that it collapses the fineness ordering, formalized by the
following statement:

Desideratum 27. Let s1, s2 ∈ D̄ be such that s1 =u s2 and s1 t s2. Then for all s1 t s t s2 we have s1 =u s =u s2.

Remark. What we’d like to have is that equivalence at u scale merges contiguous granularity levels. It is yet to be
understood what are the necessary preconditions for which this happens. One conjecture is that a uniform domain
would be sufficient, though probably not necessary.

A special case of the above may be a good first goal for testing appropriate axioms, or perhaps it could end up
being an axiom itself:

16 Here we are using totality as specified in the previous footnote.
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Desideratum 28. Let s1, s, v1 ∈ D̄ be such that s1 t s t s1 ∨ v1, and suppose v1 is infinitesimal with respect to u. Then
s =u s1.

In addition to defining equivalence at scale u, we also wish to have the ordering. Eventually, the goal is to use this
as a qualitative probability, as in Fishburn [7].

Definition 29. Let s1, s2 ∈ D̄. Then s1 is smaller than s2 in u, noted s1 ≤u s2, if s1 t s2 or s1 =u s2. We define
s1 <u s2 by s1 ≤u s2 and not s1 =u s2.

This is the final notion of ordering. After narrowness orders the actual content of the statements and fineness gives
a very precise ordering of size, ordering by scale in u aims to give a less universal notion of size relative to a fixed unit
statement u, where we collapse by equivalence at scale.

An alternative definition is as follows.

Definition 30. Let s1, s2 ∈ D̄. Then s1 is smaller than s2 in u, noted s1 ≤u s2, if there exist statements s′1 and s′2
with s′1 =u s1 and s′2 =u s2 such that s′1 t s′2.

We still need to show the following:

Desideratum 31. The two definitions are equivalent.

Remark. The idea is that smallness in u compares the equivalence classes at u scale. In other words, we should
be able to show that the map D̄/ ≐→ D̄/ =u defined by collapsing equivalence classes is well-defined and monotonic.
There may be a more natural order theoretic definition that automatically does this, and shows that smallness in u
is a preorder.

The following property is crucial for the theory of qualitative probability, but fortunately it is immediate from either
definition.

Proposition 32. For all statements s and u, we have � ≤u s ≤u ⊺.

Proof. Since � t s for any s, we have � ≤u s regardless of the choice of u. Conversely, since s t ⊺ for any s, we have
s ≤u ⊺ regardless of the choice of u.

Proposition 33. If for every statement v infinitesimal in u, we have s1 ∨ v ⋖ s2, then we have s1 <u s2.

Proof. First, using v = � (an infinitesimal) in the hypothesis of the statement, we have s1 = s1 ∨ � ⋖ s2, and so by
Definition 29, we have that s1 ≤u s2. Now, we must show it is not the case that s1 =u s2.

Suppose that s1 =u s2. By Definition 29, let v1, v2 ∈ D̄ be infinitesimals such that s1∨v1 ≐ s2∨v2. But by assumption,
s1 ∨ v1 ⋖ s2 t s2 ∨ v2. This contradicts the earlier equigranularity, and so it cannot be the case that s1 =u s2.

We need it to be the case that ≤u is a pre-order, and that it is a partial order with respect to =u-equivalence classes.

Desideratum 34. The relation ≤u is reflexive and transitive and therefore a preorder.

Fortunately, at least the first definitions of ≤u and =u behave well together:

Proposition 35. If s1 ≤u s2 and s1 ≥u s2, then s1 =u s2.

Proof. This is immediate from the first definition, since we would either have s1 ≐ s2 (which implies s1 =u s2), or we
would already have s1 =u s2.

For the second definition of ≤u, transitivity of =u is needed which we have not proven.
Question: is the map D̄/ ≐→ D̄/ =u defined by collapsing equivalence classes well-defined and monotonic?
Eventually, we wish to use ≤u as a total pre-order in order to use it as a qualitative probability. We will need an

interesting-enough subset of D̄ to capture the desired notions while still having ≤u as a total order.

3.3.1. Collapsing Orders

In Section 2.1 of [8], the idea of collapsing a poset by an equivalence relation is introduced.
If (P,≤) is a poset and ∼ is a collapsing equivalence relation, we may endow the set P/∼ with the relation ≤/∼ defined

by x/∼ ≤/∼ y/∼ whenever there exist x′ ∈ x/∼ and y′ ∈ y/∼ with x′ ≤ y′ (this is the definition used in [8]).
It turns out that (P/∼,≤/∼) is not always a poset. Here is an important example. Let our set be {w,x, y, z} and a

poset relation defined by x ≤ w, y ≤ w, y ≤ z, with the following Hasse diagram:
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w

x y

z

Let’s consider two possible cases. Suppose first w ∼ y, and x and z are only ∼ with themselves. Then in order to
collapse ≤ under ∼, we will need x ≤ w ∼ y ≤ z for transitivity.

Consider next the case that w ∼ y and x ∼ z. In order to collapse this, we will need that w ∼ x ∼ y ∼ z.
These examples show that not every equivalence relation can collapse a poset into a poset (even if it only collapses

a chain).
Lemma 2.1.3 in [8] gives sufficient conditions on the interaction of ≤ and ∼ on P for (P/∼,≤/∼) to be a poset. These

essentially prevent problems of the above form from happening.

Proposition 36. Suppose (P,≤) has a minimum element m and that the equivalence class m/∼ contains no other
elements. Further, suppose that if x/∼ ≤/∼ y/∼, then for all x′ ∈ x/∼ there exists a y′ ∈ y/∼ with x′ ≤ y′. Under these
assumptions, (P/∼,≤/∼) is also a poset.

As for a minimum element, we have the impossibility � which will be unique in its equigranularity class, but being
infinitesimal it will share its =u equivalence class, so perhaps modification of the above lemma will be necessary.

3.4. Monotone continuity up to infinitesimals

The established results in the literature of comparable probability require a specific axiom, called monotone continu-
ity, that essentially makes sure that sequences converge. This is necessary because their goal is to recover a probability
measure that is countably additive.

Definition 37 (Monotone continuity). Given a domain D̄ and a unit u ∈ D̄, we say that ≤u satisfies monotone
continuity if the following is true: given a sequence {si}∞i=1 such that si ≼ sj for all i ≤ j and s = ⋁i si the disjunction,
for every t ∈ D̄ such that si ≤u t for all i we have s ≤u t.

Note that, in general, monotone continuity is not satisfied. See examples in 5.2. In terms of measures, the issue is
that we may have that the disjoint disjunction of countably many infinitesimals is not necessarily an infinitesimal,
which means countably many sets of measure zero would not sum up to a set of measure zero.

We therefore want to make the following distinction.

Definition 38. We say that s is a countable infinitesimal with respect to u if it satisfies the following conditions:

1. s is an infinitesimal with respect to u

2. there exists a (countable) sequence {si}∞i=1 such that si t s for all i, and
∞

⋁
i=1

si is comparable but not infinitesimal

with respect to u

An infinitesimal which is not a countable infinitesimal will be called an uncountable infinitesimal.

An example of a space with countable infinitesimals is the natural numbers N. If the possibilities are natural numbers
themselves and they are equigranular, for any infinite subset S of N, each natural number is infinitesimal with respect
to S. However, a countable sequence of natural numbers may not be infinitesimal with respect to S (and indeed may
surpass S in coarseness). Another example of countable infinitesimals is any subset of R of finite positive Lebesgue
measure.

An example of a space with no countable infinitesimals with respect to the full space is an interval of finite length
in R (any positive-Lebesgue measure subset will work). To see why, note that all infinitesimals are measure zero, and
any countable union of measure zero sets is still measure zero.

It seems possible that the only obstruction to monotone continuity is countable infinitesimals, since they allow
limits of equigranular sequences to be of different granularity classes.

Desideratum 39. If u is such that there are no countable infinitesimals, then ≤u has monotone continuity.

A hint in that direction is given by the following proposition, given with no proof by [6].

Proposition 40. A necessary and sufficient condition for ≤u to be monotonely continuous is the following. Let {si}∞i=1
be a monotone sequence, that is si ≼ sj for all i ≤ j and s = ⋁i si the disjunction, and let t ∈ D̄ such that t <u s, then
there exists an n > 0 such that t <u sn.
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Before achieving the above, it may be possible to obtain a related result about fineness and monotone continuity,
which could translate to monotone continuity for ≤u.
Desideratum 41. Let u be a statement which does not admit countable infinitesimals, and let {si}∞i=1 be a sequence
of statements monotone increasing in narrowness (i.e. si ≼ sj for all i ≤ j). Write s = ∨isi for the disjunction and
assume s is finitely comparable to u. If t ∈ D̄ such that t is finitely comparable to u, and si t t for all i, then s t t ∨w
for some infinitesimal (with respect to u) w.

4. ADAPTING RESULTS FROM [6]

The paper [6] by Villegas gives us some conditions under which we can recover a probability measure given a
preorder. Here we state the conditions required in terms of ≤u and D̄u, which we take to be the set of statements
narrower than u. We start from the axioms of pre-order:

� Totality: If s1, s2 ∈ D̄u, then s1 ≤u s2 or s2 ≤u s1
� Reflexivity: For all statements s ∈ D̄u, we have s ≤u s
� Transitivity: For all statements s1, s2, s3 ∈ D̄u, if s1 ≤u s2 and s2 ≤u s3, then s1 ≤u s3.
� Boundedness: We have � <u ⊺. For all s ∈ D̄u we have � ≤u s ≤u ⊺

Next is the axiom of monotony. Let s1, s2, t1, t2 ∈ D̄u with t1 � t2. Then from s1 ≤u t1 and s2 ≤u t2 if follows that
s1 ∨ s2 ≤u t1 ∨ t2. Moreover, if ≤u is replaced by <u in one of the first two inequalities, then the last one holds with <u.

Apart from totality, we have similar properties already defined on fineness. We will need to understand on what
conditions they can be carried to ≤u. The best way forward will be to assume totality and see whether the other
properties can be derived at least in that case.

Next we have the axiom of monotone continuity (Definition 37). This we have seen before and we suspect is
connected to the lack of countable infinitesimals.

The last condition is the lack of atoms. An atom is defined in the following way:

Definition 42. An atom is a statement s ∈ S such that � <u s and there does not exist any statement s2 ∈ S such
that � <u s2 <u s.

Essentially, an atom is an immediate successor of the impossibility. In our framework, the possibilities are the
immediate successor of the impossibility under narrowness and fineness. If the unit contains finitely many possibilities,
then we will have atoms for ≤u. However, in that case we will assume equigranular possibilities, and therefore the
counting measure will apply. If the unit has infinitely many possibilities and the possibilities are equigranular, then
all possibilities are infinitesimals. We should be able to show that, in that case, there are no atoms.

The presence or lack of atoms has several important consequences. In particular, Theorem 5 in [6] §3 includes the
fact that D̄u is atomless if and only if every statement can be partitioned into two equiprobable statements. Theorem
3 in §4 states that if D̄u is atomless, then there exists a unique probability measure compatible with ≤u, and it is
countably additive.

A major goal of this work is to discover the right axioms and definitions that will lead to a notion of ≤u which has
the properties necessary for the existence (and uniqueness) of a compatible probability measure on D̄u. The above
axioms discussed are enough - several theorems from [6] give the desired result (in particular, see Theorem 3 in Section
4 and Theorem 5(iv) in Section 3, as well as their proofs). However, we have not as of yet been able to prove that ≤u
has the right properties. It is also possible that our framework will allow us to make use of different sets of axioms that
lead to a similar conclusion. The survey [7] contains some examples of different axioms which may be very helpful.

5. EXAMPLES

Some ideas on distributions on natural numbers can be found in [9].

5.1. Fineness on natural numbers through mod classes

Let N be the set of natural numbers. We define the sets Di,k = {x ∈ N ∣x mod i = k} with k < i. Therefore D1,0 = N,
D2,0 = {2,4,6, ...}, D2,1 = {1,3,5, ...} and so on. Additionally, we say Di,j t Dk,l for all k ≤ i and for all j and l. As
needed, we may overload the notation by letting Di,j =Di,j mod i where j mod i is the smallest positive residue of j
under i.
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5.1.1. The σ-algebra generated by the sets is the powerset

Let Di,j and Dk,l be two of these subsets. Consider the intersection Di,j ∩Dk,l and suppose it is nonempty; let
n be in this intersection. Then Di,j = Di,n and Dk,l = Dk,n, so the intersection is given by Di,n ∩Dj,n = {x ∈ N ∣x
mod gcd(i, j) = n} =Dgcd(i,j),n.

Note also that DC
i,j = ∪i−1

k=1,k≠jDi,k.
It follows that any finite combination of unions, intersections, and complements of sets of the form Di,j will be

empty, or countably infinite.
Next, let n ∈ N. Consider the union Sn = ∪∞i=n+1Di,0 = {n + 1, n + 2, . . .}, which may be generated by a countable

union. Thus SC
n = {1,2, . . . , n}. By combining complements and intersections, we can obtain {n} = Sn−1 ∩SC

n . We can
then generate arbitrary subsets of N using countable operations of union, intersection, and complement on the sets
Di,j .

Claim: all finite operations of union, intersection, and complement of Di,j ’s yield sets that may be written as finite
unions of Di,j ’s. Countable operations yield arbitrary subsets of N.

5.1.2. A finitely-additive measure on infinite sets

Take N as the unit. For any i, we have Di,j tDi,l tDi,j . Therefore Di,j ≐Di,l for any j and l. We have 1 = µN(N) =
µN(⋁i−1

j=0Di,j) = ∑i−1
j=0 µN(Di,j) = ∑i−1

j=0 µN(Di,0) = iµN(Di,0). Therefore µN(Di,j) = 1/i for any i and j.

5.2. Example with lack of monotone continuity

Consider the subset [0,∞) × [0,∞) ⊆ R2. Let Ui,j = [i, i + 1) × [j, j + 1) be the unit square with bottom-left
corner (i, j). Let V be the vertical (infinite) strip V = [0,1) × [0,∞) and W = [0,2) × [0,∞). Define the sequence

Wi = {U0,0, U1,0, U0,1, U1,1, U0,2, U1,2, U0,3, U1,3, ...} building upwards row by row. We have
∞

⋃
0
Wi = W . This means

n

⋃
i=0
Wi ⋖ V for all finite n but

∞

⋃
i=0
Wi =W ⋗ V . This is a violation of monotone continuity, including the definition given

up to infinitesimals (since
∞

⋃
i=0
Wi is more than an infinitesimal greater than V ).

By either definition of ≤u, this would give us an increasing sequence W ′

n ∶= n

⋃
i=0

, all of whose terms are (strictly)

bounded by V , but whose limit (strictly) exceeds V (in ≤u terms), and so this violates monotone continuity of ≤u.

6. INSIGHTFUL FAILURES

In this section we give some counterexamples for ideas that may seem reasonable but in the end do not work.

6.1. Notes on cardinality

Takeaway: as cardinality “collapses” all infinite sets into few categories, it does not tell us much in
terms of measure and fineness. Two sets having the same measure does not imply having the same cardinality
and vice-versa. Two sets with infinitely many possibilities can be equigranular, one finer than the other or not even
comparable.

Consider the reals with the standard measure. A set of finitely many points has measure zero. The rationals are
countable and have measure zero. The Cantor set is uncountable and has measure zero. Therefore sets of real numbers
with all possible cardinality can have measure zero. On the other hand, any finite open interval has uncountably many
points and non-zero measure. Therefore two sets with the same cardinality can have different measure.

Take example 5.1. We have D2,0 ≐D2,1, which both have infinitely many elements. We also have D2,0 ⊃D4,0, which
are both infinite sets but the first will have to be coarser than the second. Now consider the set of prime numbers. It
is not clear how that can be compared with the mod classes as it is not expressible with finite intersection or union.
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6.2. Limits and levels of granularity

Takeaway: given a sequence of sets with a limit, the level of granularity of the limit is not uniquely
determined by the level of granularity of the members of the sequence.

Consider the following two sequences of subsets of N. Let sn = {1,2,3, . . . , n}, and let tn = {2,4,6, . . . ,2n}. If
we are treating N as a uniform domain, we should have sn ≐ tn for all n. However, the limit ⋁n sn = N, while
⋁n tn = {2,4,6, . . .} ⊂ N. These are not equigranular limits despite the sequences being equigranular.

Here is another example which does not rely on countable infinitesimals. In the domain [0,1], considered with its
Borel sigma-algebra, there are no countable infinitesimals. Consider the sequences sn = (1/n,1] and tn = (1/2n,1 −
1/2n]. These should be equigranular as they are simply offset by a shift of 1/2n from each other. Then the limits are
⋁n sn = (0,1] and ⋁n tn = (0,1). While they have the same Lebesgue measure, the former has the point 1, and so it
should not be equigranular to the latter.

6.3. Saturated chains

Takeaway: chains of narrowness do not go through all granularity levels.
The idea was to see whether, instead of requiring totality, we could require that we could always find statements at

a desired level of description. We wanted to say that a saturated chain in narrowness, that is a sequence of statements
ordered by narrowness where no other statement could be added, would touch all levels of descriptions, all equivalence
classes in equigranularity. This does not work.

The problem is that infinite sets disrupt the relationship between narrowness and fineness, such that a saturated
chain in narrowness is not necessarily a saturated chain in fineness. For example, if we have a countable set of
possibilities (e.g. the natural numbers), a saturated chain in narrowness can start from the empty set, start by adding
possibilities one by one until we end with the full set. The set with all possibilities except one, for example, cannot
be added to the chain, but still represents a level of description that is in between all the finite sets and the full
infinite set. The only case where we can construct saturated chains is precisely when the possibilities are finite, and
is therefore not interesting.

Definition 43. Let (S,≤) be a poset. A chain is a subset T ⊆ S which is totally ordered (i.e. every pair of elements
in T is comparable in ≤). A chain is said to be saturated if there are no “gaps” in the chain. That is, there is no
s ∈ S such that s ∉ T , t1 ≤ s ≤ t2 for some t1, t2 ∈ T and T ∪ {s} is a chain.

Definition 44. A theoretical domain D̄ is said to have the saturated chains property (SCP) if given any chain
S ⊆ D̄ totally ordered by narrowness (≼), the following holds. There exists a saturated chain S′ ⊇ S, and a saturated
chain C in the set of equigranularity equivalence classes, such that for all statements s ∈ S′, there exists an equivalence
class c ∈ C with s ∈ c.

The following made the idea look promising.

Proposition 45. Let D̄ be a theoretical domain with the saturated chains property, and suppose all possibilities are
comparable. Then they must be equigranular.

Proof. Suppose all possibilities are comparable. Let p, q be possibilities. Consider the two chains {�, p} and {�, q}.
By the SCP, these may be extended to saturated chains in narrowness, with corresponding saturated chains in
fineness equivalence classes. Then since possibilities are successors of the impossibility, the fineness equivalence classes
represented by p and q must both be an immediate successor of the equivalence class representing the impossibility.
It follows that p t q, and similarly q t p, and so p ≐ q.
Proposition 46. Let D̄ be a theoretical domain with the saturated chains property. Then it must have finitely many
possibilities.

Proof. Let D̄ be a theoretical domain with the saturated chains property and such that the set X of possibilities
is infinite. Let X ′ = {xi}∞i=0 ⊆ X be a countable subset. Let sj = ⋁i

j=0 xi be the disjunction of the first j possibilities.
Let s = ⋁∞i=0 xi be the disjuction of all the possibilities in the sequence. The set C = {�, s} ∪ {sj}∞j=0 is a chain. In fact
� ≺ sj ≺ s for all j and si ≼ sj if i ≤ j.

To show that C is saturated, take a statement ŝ ≼ s such that ŝ ∉ C. Let A ⊆X ′ be the set of possibilities compatible
with ŝ. If A is infinite, since ŝ ≢ s, there exists an xi ∈ X ′ such that xi ∉ A. Therefore si ⋠ ŝ since the first is
compatible with a possibility that is not compatible with the second, and ŝ ⋠ si since ŝ is compatible with infinitely
many statements and si. If A is finite, let the xi ∈ A for which i is highest. Note that A cannot contain all previous
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xj in the sequence, since ŝ ∉ C. Let xj be the possibility with the highest j ≤ i that is not in A. We have ŝ ⋠ sj and
si ⋠ ŝ since each is compatible with a possibility incompatible with the other. Since we cannot add other statements,
C is saturated.

Now we show that, even though C is saturated, it does not go through all levels of granularity. Let x ∈ X ′ and
consider s ∧ ¬x. This is finer than s and is coarser than all other statements in C since they are all compatible with
finitely many possibilities. Therefore SCP does not hold. Therefore, if SCP holds, the domain cannot have infinitely
many possibilities.

[1] G. Carcassi and C. A. Aidala, Assumptions of Physics (Michigan Publishing, 2021).
[2] G. Carcassi and C. A. Aidala, Assumptions of Physics overview: experimental verifiability and topology (2021),

arXiv:2103.06053 [physics.gen-ph].
[3] C. A. Aidala, G. Carcassi, and M. J. Greenfield, Topology and experimental distinguishability, Topology Proceedings 54,

271 (2019).
[4] K. T. Kelly and K. T. Kelly, The logic of reliable inquiry (OUP USA, 1996).
[5] B. De Finetti, Sul significato soggettivo della probabilita, Fundamenta mathematicae 17, 298 (1931).
[6] C. Villegas et al., On qualitative probability σ-algebras, The Annals of Mathematical Statistics 35, 1787 (1964).
[7] P. C. Fishburn, The axioms of subjective probability, Statistical Science , 335 (1986).
[8] J. W. Hallam, Quotient posets and the characteristic polynomial (Michigan State University, 2015).
[9] O. Schirokauer and J. B. Kadane, Uniform distributions on the natural numbers, Journal of Theoretical Probability 20, 429

(2007).

https://doi.org/10.3998/mpub.12204707
https://arxiv.org/abs/2103.06053
https://doi.org/10.1007/s10959-007-0066-1
https://doi.org/10.1007/s10959-007-0066-1

	Assumptions of Physics blueprint: information granularity as a common foundation for geometry, measures and probability
	Abstract
	Introduction
	Overview
	Fineness and granularity
	Necessary properties for fineness
	Domain-specific properties for fineness
	Unsettled properties for fineness

	A family of measures
	Infinitesimals and finite comparison
	Recovering bounded measures
	Extending the measures


	Current attempt
	Basic fineness definitions
	Infinitesimals
	Comparision and equivalence at [u] scale
	Collapsing Orders

	Monotone continuity up to infinitesimals

	Adapting results from villegas
	Examples
	Fineness on natural numbers through mod classes
	The -algebra generated by the sets is the powerset
	A finitely-additive measure on infinite sets

	Example with lack of monotone continuity

	Insightful failures
	Notes on cardinality
	Limits and levels of granularity
	Saturated chains

	References


