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Possibilities

Theoretical statements

Verifiable
statements

Points

Borel sets

Open sets

Experimental verifiability 

⇓
Topology and 𝜎-algebra

before after

Quantities from references

Refinable aligned
strict references

⇓
Real numbers

References act as
Dedekind cuts

Statistical mixtures ⇒ Convex (linear) structures

Variability/entropy ⇒ Geometric structures

𝑃1

𝑃2

𝑆𝑝

𝑒1

𝑒2

𝑝𝑒1 + 1 − 𝑝 𝑒2
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Recover the reals
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In physics, we use real numbers to model physical quantities

Needed for a lot of mathematical tools: exponential, gaussians, trigonometry, …

ℝ

Yet, we know that infinite precision is an idealization

Many ways to mathematically construct the real numbers

As a field, as Cauchy sequence of rationals, as Dedekind cuts of rationals…

How can we define them in physical mathematics?
What do real numbers model?
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Given 𝒬, ≤ , the order topology is the one generated 
by the test {𝑞 > 𝑎} and {𝑞 < 𝑏} for all 𝑎, 𝑏 ∈ 𝒬

Order topology

This means that “the object is after 𝑎” and
“the object is before 𝑏” are verifiable statements

Note: topology only knows about order,
not about the size of the intervals!!!
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Reals can be characterized as a type of linear order

1) Every countable dense linearly ordered set with no ends is order isomorphic to the rationals

Cantor’s isomorphism theorem

Bijection with naturals
Always an element between two No greatest or smallest

One element is always
before or after another

2) The completion of a linear order is unique

Every subset has a supremum and an infimum

⇒ Every complete linearly ordered set with no ends that has a
dense countable subset is order isomorphic to the reals

Since the reals are the completion of the rationals
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How is order defined experimentally?

We have a way to compare two things, and 
decide whether one is bigger/smaller than the 
other. “Exactly the same” is a bit more difficult.

wikipedia

before after

o
nA reference (e.g. a tick of a 

clock, notch on a ruler, 
sample weight with a scale) is 
something that allows us to 
distinguish between a before 
and an after

“Before/after a reference” are verifiable statements
9
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Goal: make a mathematical model of a reference system

before after

o
n

A reference system is a collection of references. 
The experimental domain for a quantity is the 
set of verifiable statements generated by all 
possible before/after statements. 

Before On After

T F F

F T F

F F T

T T F

F T T

T T T
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1. Strict references

11

o
n

before after
Before On After

T F F

F T F

F F T

A reference is strict if before/on/after are mutually exclusive

Physically, the extent of what we measure is assumed 
to be smaller than the extent of our reference
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o
n

before after

Multiple references

Without further constraints, references 
would not lead to a linear order

𝒃𝟐 𝒐𝟐 𝒂𝟐

𝒃𝟏

𝒐𝟏

𝒂𝟏
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2. Aligned references

Two references are aligned if the before and not-after 
statement can be ordered by narrowness/implication

𝑜2
𝑏2 𝑎2

𝑜1
𝑏1 𝑎1

For example, 𝑏1 ≼ 𝑏2 ≼ ¬𝑎1 ≼ ¬𝑎2

≼  Means that if the first statement is true
     then the second statement will be true as well
That is, the first statement is narrower, more specific

Basic insight: the ordering of the points corresponds 
to the order of statements by narrowness

𝑏1
𝑏2

¬𝑎1
¬𝑎2
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Filling the whole region

If two different references overlap, we can’t say one is 
before the other: we can’t fully resolve the linear order

𝑜2
𝑏2 𝑎2

𝑜1𝑏1 𝑎1

𝑜2
𝑏2 𝑎2

𝑜1𝑏1 𝑎1

Moreover, if two references 
don’t overlap and there can be 

something in between, we must 
be able to put a reference there



https://assumptionsofphysics.org/

15

3. Refinable references

A set of references is refinable if we can address the 
previous two problems and resolve the full space

𝑜2
𝑏2 𝑎2

𝑜3

𝑜1𝑏1 𝑎1

If something can be found between 
two references, then there must be 

another reference in between

𝑜2
𝑏2 𝑎2

𝑜1𝑏1 𝑎1

𝑜3

If two references overlap, we can find a reference that 
refines the overlap
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Reference ordering theorem

To define an ordered sequence (e.g. of “instants”), the references must be (nec/suff conditions):
• Strict – an event is strictly before/on/after the reference (doesn’t extend over the “on”)
• Aligned – shared notion of before and after (logical relationship between statements)
• Refinable – overlaps can always be resolved

Additionally:

For time/space, these conditions are idealizations

Between any two references we can always have another reference ⇒ real numbers

Only finitely many references between any two references ⇒ integers

Gives you ordered points with the order topology

Dense order, which the closure on arbitrary union completes
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The ticks of a clock have an extent and so do the events (references not strict)

How does this model break down?

If clocks have jitter, they cannot achieve perfect synchronization (references not aligned)

We cannot make clock ticks as narrow as we want (references not refinable)

No consistent ordering: no “consistent” “before” and “after”

A better understanding of space-time means 
creating a more realistic formal model that 

accounts for those failures

In relativity, different observers measure time differently, but the order is the same. We 
should expect this to fail at “small” scales.
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Lack of order at small scales,
order at large enough scale

Current mathematical tools have a hard 
division between topology and geometry

What type of models should we use?

What we can distinguish 
experimentally (i.e. topology) seems 

to be linked to how precisely we want 
to distinguish (i.e. geometry)

Hard to say, but we 
can argue from 

necessity

(N.B. this is a toy 
model, each point 
should have 
infinitely many 
neighbors)

Need new math?
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Takeaways

• Real numbers can be recovered from an idealized metrological model
• Ordering of values comes from the ordering logical structure

• 3 ≤ 5 precisely because “there are less than 3 items” ≼ “there are less than 5 items”

• The hard part is the ordering, not the “continuity”
• The difference between reals and integers is, as one intuitively expects, the ability to 

always find something in between two references

• Completeness of the ordering is implied by the topology

• Failure of the idealization under real numbers would lead
to a structure much richer (and more complicated)
than a linear order

20
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Ensemble spaces
(generalized state spaces)

21
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⇒ Scientific laws are relationships between ensembles

Initial ensemble

Final ensemble

Statistical data

Preparation
procedure

Physical
process

Measurement
procedure

A physical theory must AT LEAST 
describe which ensembles are 
possible within the theory
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𝑋 = {𝑥1, 𝑥2, … }

𝑋 = {ℝ2𝑛, 𝜔}

Classical discrete

Classical continuum

Phase space
Symplectic manifold

State space

ℰ = { 𝑝𝑖 |  σ𝑖 𝑝𝑖 = 1} 

ℰ = { 𝜌 ∈ 𝐿1 ℝ2𝑛  | 
         ∫ 𝜌𝑑𝑞𝑛𝑑𝑝𝑛 = 1}

Ensembles

Quantum mechanics 𝑋 = 𝑃(ℋ)

Projective complex
Hilbert space ℰ = { positive semi-definite

Hermitian with tr 𝜌 = 1 } 
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Topology is responsible for handling 
limits and infinite operations

All other axioms are on finite elements

Experimental verifiability ⇒ topological space

24
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Statistical mixtures ⇒ Convex structure

Only finite mixtures σ𝑖=1
𝑛 𝑝𝑖𝑒𝑖  are guaranteed

Topology tells us which
infinite mixtures  σ𝑖=1

∞ 𝑝𝑖𝑒𝑖 converge
I.e. where experimental verifiability converges

𝑎 𝑏
𝑝𝑎 + ҧ𝑝𝑏

𝑃1

𝑃2

𝑆𝑝

𝑒1

𝑒2

𝑝𝑒1 + 1 − 𝑝 𝑒2

NB: the theory of topological vector spaces is well developed, 
but not the theory of topological convex spaces
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a b

Ensembles represent a collection of preparations which are, in general, not identical

Variability: how similar are the preparations within an ensemble?

Entropy is a measure of variability

26
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a

b

Final variability will be greater than average
variability before mixture

p

𝑝𝑆 𝑎 + ҧ𝑝𝑆 𝑏

Average variability
before mixture

𝑆 𝑝𝑎 + ҧ𝑝𝑏

Variability
after mixture

If we mix an ensemble with itself, the variability is unchanged
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a

Maximum increase when the ensembles are
“completely different”

p

𝑝𝑆 𝑎 + ҧ𝑝𝑆 𝑏

Average variability
before mixture

𝑆 𝑝𝑎 + ҧ𝑝𝑏

Variability
after mixture

Increase is only a function of the mixing coefficient

b
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a

If a has no elements in common with b or c,
it has no elements in common with any mixture

c

b

29
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Ensemble variability ⇒ Entropy
No standard theory of entropic spaces
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These axioms specify very minimal necessary
requirements on physical theories

How much can we derive just from these?

Here are a few things we are able to derive…

Physical mathematics starts with minimal requirements to force us to understand 
which requirements are truly independent and truly necessary
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The entropy upper bound 𝐼(𝑝, ҧ𝑝) is uniquely determined

Shannon entropy

Let’s see how it works

Maximal increase in variability during mixing
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Pick 𝑎𝑖 all orthogonal to each other

𝑆 σ𝑖 𝑝𝑖𝑎𝑖 = 𝐼 𝑝𝑖 + σ𝑖 𝑝𝑖𝑆 𝑎𝑖  

Uniform mixture of 𝑛 × 𝑚 elements

Uniform mixture over 𝑛 
uniform mixtures of 𝑚 elements

Must be the same

33
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Pick 𝑎𝑖 all orthogonal to each other

𝑆 σ𝑖 𝑝𝑖𝑎𝑖 = 𝐼 𝑝𝑖 + σ𝑖 𝑝𝑖𝑆 𝑎𝑖  

Uniform mixture of 𝑚 elements

Rational distribution over 
uniform mixtures of grouped elements

Must be the same

1

15

2

15
4

15

6

15

3

15
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𝐼 𝑝, ҧ𝑝 = −𝑝 log 𝑝 − ҧ𝑝 log ҧ𝑝

Proof “does not know” whether we are dealing with 
classical ensembles, quantum ensembles, or ensembles 
for a theory yet to be discovered

Proof is short (about two pages)

From now on,
log 𝑝 is base 2
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Separate ensembles Orthogonal ensembles

No “common component”

such that

Saturate upper entropy bound

|𝜓𝑎⟩

|𝜓𝑏⟩

|𝜓𝑐⟩

Coincide in classical 
ensemble spaces

⇐

disjoint support

Different in quantum
ensemble spaces

Two ways to define “exclusive” ensembles

Simple but powerful
definitions from

basic axioms
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Vector space constraints
from entropy

37
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Entropy bounds force mixing to be “invertible”

Can define affine combinations (i.e. negative probabilities)

𝑎
𝑏

𝑟𝑎 + ҧ𝑟𝑏

38



https://assumptionsofphysics.org/

Ensemble spaces embed
into vector spaces

𝑎

𝑏

𝑐

1 𝑐 − 𝑎 = −1 𝑏 − 𝑎

1

2
𝑐 +

1

2
𝑏 = 𝑎

⇕

Vector space operations
derived from

mixing operations
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𝑉

ℰ

Ensemble spaces are bounded
in all directions

Ensembles over a line

Entropy

Fix three points
(i.e. origin, blue
and red points)

Entropy bounds ⇒ green 
point between blue and 
purple curves
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Geometric structures
from entropy

41
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Pseudo-distance defined from the entropy

How much does the entropy increase during mixture?

Recovers the Jensen-Shannon 
divergence (JSD)
(both classical and quantum)

(does not satisfy the triangle inequality)

42
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Entropy imposes a metric on the ensemble space

⇒
Entropy strict concavity means the Hessian is negative definite

Recovers Fisher-Rao information metric
(both classical and quantum)
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Another direct calculation
from the definitions
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Measure theoretic structures
from entropy

45
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In classical mechanics the entropy of a uniform distribution 𝜌𝑈 over 𝑈
is 𝑆(𝜌𝑈) = log 𝜇 𝑈

Count of states
(Phase-space volume)

In ensemble spaces, entropy is the primitive notion. Can we 
define a notion of count of states that recovers the classical 
expression, but makes sense in the general theory, including 
quantum mechanics?

Note: given the set of all distributions with support 𝑈, 
the uniform distribution maximizes the entropy
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We can think of an ensemble as spread over distinguishable cases

The number of distinguishable cases must increase with entropy

During mixing, the number of distinguishable cases at most sums

Note:
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Maximum increase when ensembles are orthogonal.
Find 𝑝 that maximizes entropy:

Then calculate
final entropy:

Again, simple calculation that does not depend on type of space
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State capacity is a non-additive measure
additive over orthogonal sets

capacity also name
of a non-additive measure

fuzzy measure

Given a set of possible ensembles 𝐴, the count of configurations is the exponential of the maximum entropy reachable
using mixtures. If 𝐴 is the set of classical distributions over a particular support 𝑈, the maximum entropy is given by
the uniform distribution ⇒ recovers the usual count of states! If 𝐴 is the set of density matrices that has zero eigenvalues
outside of a subspace 𝐻, the state capacity recovers the dimensionality of the space ⇒ count of distinguishable states!
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Ensemble

𝑜1

𝑒2

⋮ 

𝑒𝑛

𝜆1

𝜆2

𝜆𝑛

Mixture Probability

𝑜2

⋮ 

𝑜𝑛

𝑝1

𝑝2

𝑝𝑛

𝑒1

P
re

p
ar

at
io

n
s O

u
tco

m
es

In classical mechanics, mixtures of preparations and probability of outcomes always coincide

In quantum mechanics, they do not

⇒ quantum ensemble spaces not simplexes (i.e. classical probability fails)

Can we have common measure theoretic tools 
on the preparation side?
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Fraction capacity is a non-additive probability measure

fuzzy measure

How much of 𝑒 is a mixture of other ensembles? 𝑒 = 𝑝 σ𝑖 𝜆𝑖𝑎𝑖 + ҧ𝑝𝑏 

biggest 𝑝
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Takeaways

• The principle of scientific reproducibility requires the notion of ensembles

• We can develop a theory of states and processes using ensembles
• Few physically justifiable starting points lead to a rich structure

• Many definitions and proofs can be generalized in this setting

• These notions provide a core foundation that can link to various standard 
mathematical theories
• Topological vector spaces are the foundation of modern functional analysis

• Information geometry can be shown to link to symplectic geometry
of classical mechanics and the inner product of quantum mechanics

• Non-additive measures provide a generalization of classical
measure theoretic structures

• Still a lot of work that needs to be done
to complete the theory
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Wrapping it up
• Physical mathematics: derive the math required from physical requirements

• In physics, mathematics is used to model physical systems, therefore we need mathematics that is 
designed specifically for that purpose

• Principle of scientific objectivity: science deals with evidence-based assertions
• Requires notion of verifiable statements
• Leads to topological spaces (open sets corresponds to verifiable statements) and 𝜎-algebras 

(Borel sets correspond to statements associated with tests)
• Real numbers can be derived by modeling an idealized reference system

• Principle of scientific reproducibility: scientific laws describe reproducible 
relationships
• Requires notion of ensembles
• Ensembles must be experimentally well-defined, allow statistical mixture

and be associated with an entropy (that quantifies the variability
of the instances of an ensemble)

• Recovers notions of vector spaces, geometry and measure theory

• Hopefully this shows that we can build
the required math from the ground up
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