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Recover the reals
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In physics, we use real numbers to model physical quantities R

Needed for a lot of mathematical tools: exponential, gaussians, trigonometry, ...

Yet, we know that infinite precision is an idealization

Many ways to mathematically construct the real numbers

As a field, as Cauchy sequence of rationals, as Dedekind cuts of rationals...

How can we define them in physical mathematics?
What do real numbers model?
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Order topology

Given (Q, <), the order topology is the one generated
by the test {qg > a}and {qg < b} foralla,b € Q

This means that “the object is after a” and
“the object is before b” are verifiable statements

Note: topology only knows about order,
not about the size of the intervals!!!
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Reals can be characterized as a type of linear order

Cantor’s isomorphism theorem

1) Every countable dense linearly ordered set with no ends is order isomorphic to the rationals

SNy T T

A |  bet . One element is always
Bijection with naturals ways an element between two before or after another No greatest or smallest

2) The completion of a linear order is unique

Every subset has a supremum and an infimum

= Every complete linearly ordered set with no ends that has a
dense countable subset is order isomorphic to the reals
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How is order defined experimentally?

wikipedia

We have a way to compare two things, and
decide whether one is bigger/smaller than the
other. “Exactly the same” is a bit more difficult.

A reference (e.g. a tick of a before after
clock, notch on a ruler, D

sample weight with a scale) is
something that allows us to
distinguish between a before

and an after
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Goal: make a mathematical model of a reference system

Definition 3.17. A reference defines a before, an on and an after relationship between
before after itself and another object. Formally a reference r = (b,0,a) is a tuple of three statements
< T such that:

1. we can verify whether the object is before or after the reference: b and a are verifiable
statements

D, 2. the object can be on the reference: o # 1
3. if it’s not before or after, it’s on the reference: -b A -a <o
4. if it’s before and after, it’s also on the reference: bana <o

A beginning reference has nothing before it. That 1s, b= 1. An ending reference has
nothing after it. That is, a= 1. A terminal reference is either beginning or ending.

“ocors | —on | “nter

r A reference system is a collection of references.
The experimental domain for a quantity is the
set of verifiable statements generated by all
possible before/after statements.
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1. Strict references

A reference is strict if before/on/after are mutually exclusive

T F F 0
F T
F F T O

Physically, the extent of what we measure is assumed
to be smaller than the extent of our reference
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Multiple references

Without further constraints, references
would not lead to a linear order

L Lo e
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2. Aligned references . ®

<

v

Two references are aligned if the before and not-after
statement can be ordered by narrowness/implication
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For example, b; < b, < —ay < —a,
< Means that if the first statement is true
then the second statement will be true as well
That is, the first statement is narrower, more specific

A

v

Basic insight: the ordering of the points corresponds
to the order of statements by narrowness
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Filling the whole region

4_192_L,

If two different references overlap, we can’t say one is
before the other: we can’t fully resolve the linear order

Moreover, if two references

don’t overlap and there can be

something in between, we must

be able to put a reference there
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3. Refinable references

A set of references is refinable if we can address the - % az
previous two problems and resolve the full space

v

If two references overlap, we can find a reference that
refines the overlap

< a >
bz 02 a2
If something can be found between
two references, then there must be %
b1 01 a4

another reference in between
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o CHAPTER 3. PROPERTIES AND QUANTITIES

the porsthilickes themselves can be ordered, and bow this ordaring. i tho eod, Is uniquely
charactarizod by statiment narTowness: 10 is ke than 42 bocause “the quentity is less then
10 1 warrower than *the quaniity is less than 42",

As the defining charactoristic for a quantity i the ability 0 compare its values, then the
valises s be ordered 1n some fashion from smaller to groster. Therefore, ghven two difforent
salues, 060 st be befors the other. Mathematically, wo call linear order an order with such
a chiarncteristic s wo can Imagine the clements positionod along a line
are not lnearly orderod: b direction is greater than the other. Thorelore,
weetor will nok strictly be a quantity but a collection of quantities?

We also have to define how this order can be experimentally vertied. The idea is that we
should, at Jewst, be ab 10 vertfy tha the value of a given quantty i before or after a set
valie. This allows s to construct boands such as the mass of the electron is 511205 ke V"
which wo take 10 bo cquivalent 10 “the mase of the electeon s more than 510.5 keV but leas
tham 511.5 ke V" For tmtogers, this alsa allows ws to yorify particular mumbers a “he earth
s ome natural satellite” s equivalent W the “the earth has more than serv naturel satellites
ond fewer than two”. Theredore wo will defino the order topology s the 0ne genartad by ss
of the type (a,ce) and (-o0.b).

A quantity, then, ks an ondered property with the onder topology

Definition 3.4. A linear order o & set Q i a rviationshep <: Qx Q = B such tha
1. (antisyrmetry) f g < as and @y <@y then ¢y = @
2 (iransitiouty) /< 0 end 2 5 @ then . € &
3. (1otal) ot loast @ S @z O @ S @
A st togethar with  linenr ovder & culled & linearly ordered set
Deftnition 3.5. Let (Q,<) be o lincerly ordervd set. The order topology is the topol
oenaated by the collections of sets of the form:

(a,00)={g¢ Qla<al . (-oo.t)= gt Qla<t)

Definition 3.6. A quantity for an experimental domain Dy s a linearly ordered prope;
Formallg, i is o tuple (Q.<.q) where (Q.q) i 6 property, <: Qx Q =+ B s @ linear or
and Q is a topological space with the onler topolagy with respect fa <

As for propertses, the quantity values. o ‘symbols used to label the difforeat cass.
Q may m.mpmm to the integers, real ondered alphabetica
ke waka e o caphared by the mambes (hemmhas dy s capimed fy the )

Tin othee i (o, graod
rcese, Erandenr) and x i “AmOREE" (.5, GUATAA, Meoge, quamite). 1t s 1ho second messing of G
that i captu

oty .

W will b eatin e e of s e i b bk, el oy ey

Do Gatnd bedon atocaeets thas a2y bos
st ik

Sooking f s before ce aer tha ome we Tandtsly sl

l) wheter the wod
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wrhich returns sloments of tho original set and therefore reduces to countablo conjumctions.
Therefore, when forming Dy the only new clements will be the countable dishunctions.

Consider two comiablesets By, By B Thelsdisjuncions by = ¥ b and ba = \. b
roprasent the narrowest statement that is broader than all clements of the respoetive sat.
Suppose that for each clemens of B, we can find a broader clement in By. Then by, being
‘broader than all elements of By, will be broader than all elements of By. But since by is
tho narrowest alemont that is broader than all loments in By, wo havo by = by. Conversely,
suppose there is some element. in By for which there is no broader clement in By. Since
the initial set. is fully ordered, it means that that element of By is broader than all the
elements in By, This moans that eloment 1 broador than by and sinco by is broador than
all clements in B we have by # by, Therefore the domain Dy generated by B is linearly
ordered by narrowness.

Now we show that (Da,) is linearly ordered. The basis B, is linearly ordered by
‘broadness because the negation of is clements are part of B and are ordered by narrowness.
Note that broadness s the opposite order of narrowness and therefore a set linearly ordered
by ono s lincarly ordared by the other. Theroforo 5, is aso lincarly orderod by narrowness
and so 5 D, by tho provions argument. Thercforo D, is orderod by broadness.

T show that D = Dyu~(Ds) is linearly ordered by narrowness, we only need to show
that the countablo disjunetions of clemants of B aro oither narrawar or broado
contabls conjumetions of the nogations of sloments of B,. Let 8, c By and Ag ¢
disjunction by = Vb represents the narrowest. statement,tha is broader than all

of By while the conjunction -3z =~ / a= A -a represonts the broadest statel

ayshy
is narrower than all elements of ~(A;). Suppose that for one clement of ~(4;
find a broader statement in By. Then by, being broader than all elements in &
Droader than that one element in ~(Az). But since ~a; Is narrower than all el
~(A2), we have ~a; < by Conversely, suppose that for no element of ~(A;) we ¢
Droader statement in By As B is linearly ordered, it means that all elements in
‘roader than all eloments in By. This means that all clements in ~(45) are bro
by and therefore by < ~a. Thereforo D) is linearly ordered by narrowness.

Theorem 3.16 (Domain ordering theorem). An erperimental domain DX i
ordered if and only if it is the combination of two erperimental domains Dx =
that:

(i) D = Dyu~(Da) is linearly ardered by narrouness
(4 ol lements of D e prt of @ i (5, %) sich that 5, Dy 5, < 2. ¢

() =<0 R e Ememedia smcao, hem s T

Proof. Let Dy be a naturally ordered experimental domain. Let B and B, |
as in 3.12 which means B = By u B, is the basis that generates the order topg

be tho domain generated by 5, and D, be the domain genorated by B,. TH
generated from D and T, by finite conjunction and countable disjunetion and
Dx=Dyx Dy

immediate suceessor of s, in D or 5= -5, 3.

w
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tha allows us (o map statoments to numbers and viesversa.

A wo want %
thiat are fully charactertaed by  quastty. For exampie, the domin for the mass of a system
will be fully characterized by a real number greator than or equal 0 7evo. Fach posdbility
will be identifiod by & pamber which will coprespond o the mes expeessed In a particular
unit, say 15 K As the vlues of the mass are ordered, we can alo say that the possibiitos
thomselves aro ordored. ‘That is, “the mass of the systern is 1 Ko® procods *the mass of the
sywiem 6 2 Ky’ This ordertag of the possibiites will bo Bnked 1 the natural topology &=
“the mass of the system i lexs thn 2 Kg”, the disfuction of all possshaites that come befors
a particular pasibility, s a verifishle statemest.

Wo cal o maare orde o the pomtiy » b oner o them s tha th ordr

gy i by & quantity
i oty I’ sty oered e o quancy I oderd  he sy i b orde
ieamrpdie. 1 other words, we o cnly g ity & o expeimemtal di H
alroady his a natural ordering of the same type.

1
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mass of the spetem is more then g Ko* s also ordered by narrownoss but with the reverse
ardartng of the passthilitos/vabues. Those am the very statements whose vorifiablo secs define

Jolntly comstitute a basis for the experimental domain.

Now consider the statement 51 = *the mase of the system i less then or egual o 1 Ko™
with 53 = “the mass of the syster is less than 1 Ko". Wo bavo 52 < 51. In fact, if wo roplace
tho valtio in 5; with amything Joss than | Kg wo'll sl have 5 ¢3,. Instoad if wo e a value
groater than | Kg wo'd have 5, 55, In other words, If we call B the set that mn.l.. both

Tose-than siatemcnts this s abo linarly narrownes:,

syatem i greater than { Kg”. In other words, B = By U ~(8.) contains all the stements bke
mass of the systems is less than gy Ko* and ~“the mass of the systews is more than gy
Ko and these are all linoaly ordered by narrowness.
Tha ordering of B can be further characterized. Nota tha 3 = %the mass of the systems
i less than or egual to 1 Ko” is tho immediate sucosece of 3, = “the mass of the system is
lexs than 7 Ko, Tha is, they are different and there can't bo any othar statement 1o B that
s bronder than %) but marrawer than 3 sioce they diffor for a singe case. This will bappen
for any mass value. So B 1s compased of two exact eoples of the andering of X. whero each
edernent.of one copy |s immediately foflowed by an element of the otber copy. Morvowwr, if &
statusment in B has an iminediate suceesor, there must be oaly one case that soparates the
two, If wo call @ the walue of that case, than the statement mast b of the form The mess
o e s o ke ki Ky whie b imain st s of the i e v of
the system is less than ov eyual 10 gy Kg": the succeor is broudor by Just the posibility
emockaad 7k . Thirsbrestbeasmte b £ Uit Raee 8 i pcommor e
By s well
"The main result is that tho sbove charactertzation of the bass of the domals is Becesary
and affcient. to arder the posdbilities. 1f an experimental damasn has i hasks composed of
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“rem” and *rom’ =
X |z za} or {ze X|

60

To prove (i), we have that B, and B, are linearly ordered by 3.14. We need to show that,
the linear ordering holds across the sets. Let 71,72 € X and consider the two statements
“2 > 19", As X is linearly orderod, cither {z € X |z <11} ¢ {xe
<12} € {xe X |z <z}, Therofore cither *r <21 < e < 72" or
“z 2" 5 “z< ", Which means B = B u~(B,) is linearly ordered by <. By 3.15 the set

=Dy u~(D.) is also linearly ordered

To prove (i), let s € Dy Take s, € D, such that s, s the narrowest statement in
~(D.) that is broader than 5. This exists because D, is closed by infinite disjunction. As
s, 53, let X, be the set of passibilities compauble with -, but not compatible with s,
The set canmot have more than one element, or we could find an clemant z; € X, such that
5% "2 <517 <50, If Xi contains one possibility, then s, is the immediate successor. If
X1 15 empty then s, = ~s,.. Similarly, we can start with s, € D, and find s; ¢ Dy such that s,
s the broadest statement in D that is narrowar than —s,. Let X, ba the sot of possibilitios
compatible with s, but not compatible with s;. If X; contains one possibility, then s,
s the Immediate successor and if X, 1s empty then s,

To prove (iil), lot 51,55 € D such that s, is the e successor of s, This means
we can write 52 =51V 71 for some 2 ¢ X. This means 1 = % < 2" while sz = “r < 1" and

therefore 51 < B
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of the i Let (-)"* : By - By be the function such that ~(5™) = -6 is
the immediate successor of b. Let b : X — By b the function such that z = ~b(z) a-b(z)**.
On X define the ordering s such that 1 < z2 f and only If b(z) < h(n) Since (By, <)
is linearly ordered so is (X,<). To show that the ordering is natural, suppose T1 < T2
then b(z;) <-b(x;)** < b(z2) and therefore ; = b(zz). We also have ~b(z1)** < b(z:) <
~b(2)* and therefore T3 < b(z;)**. This means that given a possibility =, € X, all and
only the possibilities lower than r; are compatible with b(r,) and therefore b(r;) = “r <
2,", while all and only the possibilities greater than 7y are compatible with b(z;)** and
therefore b(z,)** = “r > #,”. The topology is the order topology and the domain has a
natural ordering. =)

References and experimental ordering

In the previous section we have characterized what a quantity is and how it Telates to an
exporimantal domain. But as we saw in the first chapters, the possibilities of a domain are
not objects that exist a priori: they are defined based on what ean be verified experimentally.
Theroforo simply i ordering to the possibilities a( a domain does not answer the
rueted? How do we, in practice,
create a system of etttk s to s q\.m.w at a given level of precision?
What are the assumptions we make in that process?

In this section we construct ordering from the idea of a reference that physically defines
a houndary hetween a before and an after. In general, a reference has an extent and may
overlap with others. W define ordering in terms of reforences that. are clearly before and

‘others. We sco that the possibilities have a natural ordering only if they are generated
from a set of references that is refinable (we can always find finer ones that do not overlap)
and for which before/on /after are mutnally exelusive cases. The possibilitics, then, are the
finest reforences passible.

We are by now so used of the ideas of real numbers, negative numbers and the number zero
that it is difficult to realize that these are mental constructs that are, in the end, somewhat
recent. in the history of humankind. Yet geometry itself started four thousand years ago as
an experimentally discovered collection of rules concerning lengths, areas and angles. That
s, human beings were measuring quantities well before the real numbers were invented. So,
how does one construct instruments that measure values?

To measure position, we can use a ruler, which is a series of equally spaced marks. We
give a label to each mark (e.g. a mmber) and note which two marks are closest to the target
position (e.g. between 1.2 and 1.3 cm). To measure weight, we can use a balance and a set of
equally prepared reference weights. The balance can clearly tell us whether one side is heavier
than the other, 5o we use it to compare the target with a number of reference weights and
note the two closest (e.£. between 300 and 400 grams). A clock gives us a series of events to
compare to (e.g. earth’s rotation on its axis, the ticks of a clock). We can pour water from
& reference container into another as many times as are needed to measure its volume. Tn all
these cases what actually happens is similar: we have a reference (e.g. a mark on a ruler,
a sot of equally prepared weights, a number of ticks of a clock) and it is fairly easy to tell
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Temtatan’s Vs

Descicn ;.u, Lot Dy o & maturally orderwd experimental domain end X s possi
(r<n’|neX), Bu= ("r>n" [n1e X} and B Byu~(B).

Definition 3.13. m (O ) te an orderd set. Let @€ Q. Then g3 in

successor of g, an immadiate csaes of 4 tre 0 et il

Mmmmmw:mtﬂno That is, g1 < @z and there is no g« Q such that gy < § <

Tuw elements are of ome ta the immediate successor of the other.

Proposition 3.14, Lt Dy be a nacurally ordernd expervmental dowam. Then (B,
(B,.2) and (B, <) ore linearly odered sets. Moreover (By.<), (By.¥) are onder iscwmary
0(%.9)

Proof. 1as | ~+ B bo defined wuch that f(x)) = *z < 7", As there &s ome ¢
caly oo statemet *r < ;" for cach 2y ¢ X, [ s a bijoction. Suppose 3, € 72,
e f(22) = o Yy 7)1 02 st et

e () () e s - b
lnllmrp-n'ﬂdlmn-lbﬂ[ hzmqﬁm\nunn-n(&,l)nm]{\ ()

"B b dotiaed smch bt g(x;) = 5 > 51" As thete
o only one statement *r > 7,” for each 7, € X, g in a hijection. ‘anr,‘
havo g(z) = x)v( x): (1) ¥ 9() and thered

#5)= IJ\..,...A h\x x| (n‘-x»-tﬂ S vata)
(1) % 9(r3). On tho othar hand If g(s;) * g(z3) then as sus (z1,00) 2 (53.00) wh
woais 31 5 7o, This zasis that 9 1 un ot Iovaorphiens becwoen (BL:%) and (X ;<)
“To show that B Is inearly ordered, lot 2y, 73« X. If thoy both come from either By

£<n". Which means

BRA T I o 0 e o sl et sich et |
s lineaty ordered by narvouness. Let T\, and D, be the expersmental dome
wely penersie ond D= Dyu-(Da). Then (Dy.), (Da.>) end (D,=) are ncamy

irst wo show that (D). ) s inearly ordorod. Wo have that B, islincarly ordered
hocanse it s a subset of B early ordered by arrownims. Note
Jumctson of a fnite set of linearly oedored by narrowness will roturn
st cloment and the disjunction of  fiuite set of statemonts linearly ordered
s il oturn the broadest disjunction, instead, can
o cloments. But using thoso chemeats again will not introduce now onos:
Jon of countable disfunctions will stll be & countable disjunction; the finke
of countable disjunctions is the countable disjunction of finita conjunctio
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Note that determining whether the quantity is exactly equal to the reference is not as casy
the mark on the ruler has a width, the balance has friction, the tick of our clock will last a
finite amount, of time. That s, the reference itself can only be compared up to a finite level
of precision. This may be a problam when constructing the references themsalves: how do we
Ko tha the marks o ou e atoally spaced, o1 hat the welghesaxocaally propared,
or that ticks of our clock are equally timed? It is lem in. the sense that, in a
o e ntrumonts af mrement t bo ablo Lo et metrATenIS of MRS
Yet, oven If our referaneas can't. bo perfoctly compared and are not parfeetly cqual, we ean
still say whether the value is well before or well after any of them.

To make matters worse, the ohject we are measuring may itsclf have an extent. If we
are measuring the position of a tiny ball, it may be clearly before or clearly after the nearest
mark, but it may also be partly before, partly on and partly after. One may try to sidestep
the problem by measuring part of the object, say the position of the center of mass or of its
closest part. But this assumes we have a process to interact with only part of the object, and
that part can only be before, on or after the reference. Tt may be a reasonable assumption in
many cases but we have to be mindful that we made that assumption: our general definition
will have to be able to work in the less ideal cases.

In our gencral mathematical theory of experimental science, we can capture the above
discussion with the following dofinitions. A refareneo is represented by a sot of three state-
ments: they tell us whether the objeet is bofore, on or after a spocific reference. To make
senso, these have to satisfy the following minimal requirements. The before and the after
statoments must.be verifiable, as otherwise they would not be usabl as rferences. As the
reference must be somewhere, the on statement cannot be a contradietion. If the object is
not before and not after the reference, then it must be on the reference. If the object is before
and after the reference, then it must also be on the reference. These requirements recognize
that, in general, a reference has an extent and so does the object being measured

o can compare the extent of two references and say that one s finer than the other if
the on statement is narzower than the other, and the before and after statements are wider.
This corresponds to a finer tick of a ruler or a finer pulse in our timing system. We say that
a eference is strict if the hefore, on and after statements are incompatible. That is, the three
cases are distinct and can’t he true at the same time.

Dofinition 3.17. A veference defines a before, an on and an after relationship between
itself and another object. Formally a reference v (b,0,3) & a tuple of three statements
uch that:

1. we can verify whether the object s before or after the reference: b and a are verifiable
statements

2. the object can be on the reference: 0% 1|

3. if it’s not before or after, it’s on the reference: ~bA-~a <o

4. if it’s before and afier, it’s also on the reference: bAa <o

A beginning reference has nothing before it. That is, b= 1. An ending reference has
nothing ofter it. That @, terminal reference is euher beginning or ending.
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Proof. By definition, we have -ba -a <o and by 1.23 ~(-ba-a)v vave. O

Definition 3.10. A reference v = (b, 01,31) s finer than another veference v = (bz, 0z,32)
ifbizbn, 0102 and ay 2

Corollary 3.20. The finer relationship between references is o partial order.

Proof. As the finer relationship is direetly based on narrowness, it inherits its reflexivity,
antisymmetry and transitivity properties and is therefore a partial order

‘partiol order.

Definition 3.21. A reference is strict if its before, on end ofter statements are incom-
patible. Formally, r=(b,0,a) is such that b+ a and 0= -ba -a. A reference is loose if it
is ot strict.

Remark. In general, we can’t turn a loase reference into a strict one. The on statement,
ean bo made strict by replacing it with ~b—a. This is possible because o is not required to
‘e verifiable. ‘The before (and afier) statements would need to be replaced with statements
like b -3, which are not in general verifiable because of the negation.

can bo given 2 linear order
Intuitively, the vertical lines are aligned wh
Concapuually, the overlapping vertical lines are aligned because we can imagine narrower

have a1 = +(bi v or).
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For transitivity, if 1y < 2, we have by v o1 # 02 v 22 and therefore ~(by ver) 7 03 vay
by 1.23. Since by vorvar =T, we milar]

227 ~(b2voz) 7 03 vas. Putting it all togother ~(byven) z ozvaz > o ~(b2voz) 7 osvas,
which means b1 v o1 # 03 vas. o

ly if r2 < rs we'll have

Corollary 3.24. The relationship 1 < 1, defined 10 be true if ry <1 011y =1, 5 &

we saw, two references may overlap and therefore an ordering between them cannot be
defined. But references can overlap in differemt ways.

Suppase we have a vertical line one millimeter thick and call the left side the part before
the line and the right side the part after. We can have another vertical line of the same
thickness overlapping but we can also have a horizontal line which will also, at some point,
overlap. The case of the two vertical lines is something that, through finding finer reforences,
The case of the vertical and horizontal line, instead, cannot.

the horizontal and vertical are not.

Iines around the borders, and those lines will be ordered references in the above sense: each

“To measure 2 quantity we will have many references one after the other: a ruler will have
many marks, a scale will have many reference weights, a clock will keep ticking. What does
it mean that a reference comes after another in terms of the before/on fafter statements?

1f reforence ry is before reforence r, we expect that if the value measured s before the
first it will also be before the second, and if it is after the second it will also be after the first
Note that this is not enough, though, because as references have an extent they may overlap
And if they overlap one can’t be after the other. To have an ordering properly defined we
must have that the first Teference is entirely before the second. That is, if the value measured
is on the first i will be before the se

Mathematically, this type of ord:

of statements.

before and strictly after. It does no
One may be tempted to define the
requires refining tho references and, |
refined references, ot the original o

Definition 8.22. A reference is s
the first it connot be on or after th
Proposition 3.23. Reference onl

o irvefterivity: not r<r
* tramsitivity: i 7y <12 and vy
and is therefore a strict partial ¢
Proof. For irreflexivity, sinea

and therefore bv o=ova. Therefo
irreflexive.

T CHAPTER 3. PROPERTIES AND QUANTITIES

Proof. We have by v oy = (b voy) AT =
(rvo)ae2vaz) = (L ven) abz) vz
since bi < b v or, we have by < b

Similarly, we have 02 vaz = (02v22) AT = (02vaz) A vorvan) = ((02va2) Abrv
01))v ((02vaz) A1) = 1 v{(0g vag) nay) = (03 vag) nay. Therefore 3w 0z <21 And since
250, vay, we have 3, 33y

Since by vo; #03 v ag, we have by #3; which means by < ~az.

Since by voy vay = T, We have ~ay < by voy. Similarly ~by < 0vas. Since by voy #02vas,
a1 7 ~b; and therefore —a; < by

Since by < by, 3 a1, by a3 and ~a; % by, the two references are aligned o

by v 1) A (by v 03 v 3) = ((by vor) nba) v
(b1 vo1) Abz. Therefore by v o1 < b2, And

Proposition 3.28. Let 1y = (b1,01,31) and 15 = (b 02.32) be twa striet references. Then.
ry<ry if and only if ~ay <bz .

Proof. Let 1y < ry. By 3.27, we have ~a; < by. Conversely, let a; < by. Then ~ay # ~by
Because the references ate strict, ~a; = by v oy and ~bs = 0 v 3. Therefore by vo; 403 vaz
and 13 <7, by definition. o

Definition 3.29. A reference is the immediate predecessor of another if nothing can be
Jound bejfore the second and ofter the first. Formally, 1 < ra and a1 4 ba. Two references
are consecutive if one is the immediate successor of the other.

Proposition 3.30. Let 1 = (by,01.3,) and ry = (b3,02,31) be two references. If my is
immediately befare 1 then b = ~a

Proof. Let ry be immediately before ro. Then 3, # by which means by < -a;. By 3.27
wo alsa have -a; < by. Thereforo by = -ay. =l

Proposition 3.31. Let 1y = (by,01,31) and 73 = (b, 02,32 be two strict references. Then
ry is immedintely before 7 if and anly if by = —a,
Proof. Let 1, be immediately before ra. Then by = -a, by 3.30. Conversely, let by = ~a,

Then 1, < r3 by 3.38. We also have a; # a1, therefore a; # by and ry is immediately beforo
£2 by definition o

6 CHAPTER 3. PROPERTIES AND QUANTITIES

means we can find g = (b, ~b A a3,32) for some b e D, such that r3 < rz and thereforo
~a15b<-an

For the third, suppose a1 € Da and bz & Dy such that ~a1 < bz, Then 1 = (1,-a1,a1)
and r2 = (b2, ~ba, 1) are strict references aligned with the domain such that 1 <r2 but ra
s not an immediate succassor of ;. This means we ean find r; = (b, -b A ~a,a) such that
£1<r3 <77 and therefore -3, < b<-a< by o

Proposition 3.37. Let D be an experimental domain generted by a set of refinable aligned
sirict veferences. Then ol elements of I are part of a pair (s, -s,) such that ss < Dy,
S0 € Dy and —, is the immediate successor of s5 in D or sy = —s,. Morcover if s< D has
an immediate successor, then s e Dy.

Proof. Let D be an experimental domain generated by a set. of refinable aligned strict
referonces. Let sy € Dy, Lat A= {acDlavs,# 7). Let s, = V a. First wo show that
5% o% Wehave s as,=sA-Va=sa A2 Asuwa For all a € A we have
avsy# T, -a# sy which means s, < a bocause of the total order of D. This means that
sy -2z for all a€ A, therefore s A —Sa = 5, and % ~Sa.

Next. we show that no statement s € I is such that sj < < ~se. Let 2 € Dy such that
s < -a. By construction a ¢ A and therefore ~ < -a. Therefore we can’t have s; < < -Sa.
W also can’t have b e Dy such that s, < b < ~s,: by 3.36 we'd find a € D, such that
st <a<b < -5, which was ruled out. So there are two cases. Fither sy # -s, then s} < -,
S IS the immediate successor of b. Or s5.= —s,.

“The same reasoning can be applied starting from s, € D, to find a sy e D such that s is
the immediate predecessor of s, or an equivalent, statement. This shows that all elements
of I are paired.

"To show that if a statement in ) has a successor then it must be a before statement,
let 51,5, € D such that s is the immediate successor of ;. By 3.36, in all cases where
518 D; and s, ¢ Dy we ean always find another statement between the two. Then we must
have that s; € Dy and € B, o

Theorem 3.38 (Referonce ordering theorem). An experimental domain is naturaily or-
dered if and only if it can be generated by o set of refinable aligned strict references.

Proof. Suppose Dx is an experimental domain generated by a set of refinable aligned
strict, references. Then by 3.34 and 2.37 the domain satisfies the requirement of theorem
3.16 and therefore is naturally ordered

Now suppose Dx is naturally ordered. Define the set By, B, and D as in 3.12. Let
R={(b,~ba-a,3) [be By,ae B, b<-a} he the set of all referencas consiructed from tho
basis. First let us verify they are references. The before and afier statements are verifiable
since they are part of the basis. The on statement —b A -a is not a contradietion since
b<-ameans b #3 and b # -a. The on siatement is broader than —b A -a as they aro
equivalent. and it is broader than b3 as that is a contradiction since b < ~a. Therefore R
15 a set of references. Since the before and after statements of R coincide with the basis of
the domain, Dy is generated by .

line wonld be complately before or after, without intersection.
not-after statements of one reference are either narrower or broader than the before and not-
aftor statements of the other. That is, alignment can also be defined in terms of narrownass

34

This means that the before and

Note that. if a roference i strict, beforo and afier statements are not compatible and
therefore the before statement i narrower than the not-after statement. This means that,
given a set of aligned sirict roferences, the sat of all before and not-after statements is linearly

ardared by narroumass  As wa sas in the nrevions soction this was a necassary candition

3.3. REFERENCES AND EXPERIMENTAL ORDERING 5

Definition 8.33. Let D be  domain generated by a set of references R. A reference
7= (b,0,a) is said to be aligned with D if be Dy and a€ Da.

Proposition 3.34, Let D be an eperimental domain generated by a set of aligned strict
references R and let D = DyU~(Pa). Then (D) is kneariy ordered.

Proof. By 3.2 we have that B = Byu~(B,) is aligned by narrowness. By 3.15 the
ordering extends to o

Having a set of aligned references is not necassarily enough to cover the whole space at all
lovels of precision. To do that we need to make sure that, for example, betwoen two Teferences
that are not consecutive we can at least put a Teference in bavween. Or that if we have two
Teferences that overlap, we can break them apart into finer ones that do ot overlap and one
is after the ather.

We call a set of references refinable if the domain they generate has the above mentioned.
properties. 'This allows us to break up the whole domain into a sequence of references that
do not averlap, are linearly ordered and that cover the whole space. As we get o the finest
reforences, their before statements will be immediately followed by the negation of their after

toments, since there can't be any reference in between. Conceptually, this will give us the
second and the third condition of the domain ordering theorem 3.16.

Definition 3.35. Let D be an experimental domain gencratad by o set of aligned references
R. The set of references is vefinable if, given two strict references , = (by,01,3) and
1= (b,02,22) ligned with D, we can. aluwnys:

« find an intermediate one i they are not consecutive; that i, if 1y < 1y but ry i not
the immediate successor of vy, then we can find o strict reference 7y aligned with D
such that 1y < T <1y

o refine overlapping references if one is finer than the other; that is, if 03 < 0y, we can
find o strict reference v aligned with D such that o3 < o1 and either by = by and
mry oragza andm cr.

Proposition 3.36. Let D be an experimental domain genernced by o set of refinable aligned

stried references

3.4. DISCRETE QUANTITIES ™

Now we show that R consists of aligned strict references. We already saw that b # a
and wo also have ~b A ~a is incompatible with both b and a. The references are strict.
To show they are aligned, take two reforences. The before and not after statements are
linearly ordered by 3.14 which means the references are aligned.

To show R is refinable, note that each reference can be exprosed as (“r < 2, *r <
2 <z, %> 2,") whore 11,73 € X and “z; €z <" = > 7" A%z < . Thatls,
every reference 1s identified by two possibilities 2,7z such that 2, < T2, Therefore take
two references r1,r2 € R and let (21,2;) and (25, 24) be the respective pair of possibilities
we can use to express the references as we have shown. Suppose r; < ra but they are not
consecutive. Then “z <257 < “r < 25", That is, we can find 75 € X such that 2, < 25 < 73
which means “z < 2" % “r < 75" and “z <25” % “z < 25", Therefore the reference ry ¢ B
identified by (z5,75) is between the two references. On the other hand, assume the second
reference is finer than the first. Then z, < Tg and 7 $ T2 With either T, ¢ 75 of 7, & Ta.
Consider the references r3,ry € R identified by (z1,71) and (zz,2;). Fither rs < r3 or
ry < 1y Also note that the before statements of r) and ry are the same and the afier
statements of ; and r, are the same. Therefore we satisfy all the requirements and the
set R is refinablo by definition. o

To recap, experimentally we construct ordering by placing references and being able 1o
tell whether the object measured is before or after. We can define a linear order on the
possibilitics, and therefore a quantity, only when the set of reforences meets special conditions,
The references must be strict, meaning that before, on and after are mutually exclusive.
They must be aligned, meaning that the before and not-afier statement must be ordered by
narrowness. They must be refinable, meaning when they overlap we can always find finer
references with well defined before/afier relationships. If all these conditions apply, we have
a linear order. If any of these conditians fail, a linear order cannot. be defined.

The possibilitics, then, carrespond to the finest Teferences we can construct within the
domain. That is, given a valuo gy, we have the passibility “the value of the property is qo”
and we have the reference ( “the value of the property is less than gy, *the value of the property
is qo”, “the value of the property is more than go”).

Discrete quantities

Now that we have seen the general conditions to have a naturally ordered experimental do-
‘main, we study eommon types of quantities and under what conditions they arise. We start
with discrete ones: the mumber of chromosomes for a species, the number of inhabitants of a
country or the atomic number for an element are all discrete quanities. These are quantities
that are flly eharacterized by Itegers (positive or nogative).

We will see that d have a simple
thera can only be  finite mumber of other roferencas.

"The first. thing we want to do is characterizo the ordering of the integers. That is, we want
to find necessary and sufficient conditions for an ordered set, of clemenis to be isomorphic to
a subset of integers. First we note that between any two integers there are always finitel
many elements. Let’s call sparse an ordered set that has that property: that between two
elements there are only finitely many. This s enough to say that the order is isomorphie to

PP

between two references




Reference ordering theorem

To define an ordered sequence (e.g. of “instants”), the references must be (nec/suff conditions):
» Strict —an event is strictly before/on/after the reference (doesn’t extend over the “on”)

* Aligned — shared notion of before and after (logical relationship between statements)

* Refinable - overlaps can aIways be resolved Gives you ordered points with the order topology

Additionally:

Dense order, which the closure on arbitrary union completes
Between any two references we can always have another reference = real numbers

Only finitely many references between any two references = integers

For time/space, these conditions are idealizations
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How does this model break down?

The ticks of a clock have an extent and so do the events (references not strict)
If clocks have jitter, they cannot achieve perfect synchronization (references not aligned)

We cannot make clock ticks as narrow as we want (references not refinable)

No consistent ordering: no “consistent” “before” and “after”

In relativity, different observers measure time differently, but the order is the same. We
should expect this to fail at “small” scales.

A better understanding of space-time means
creating a more realistic formal model that
accounts for those failures

https://assum ptionsofphysics.org/

Assumptions

Physics s



What type of models should we use?  Hardtosay, butwe
— can argue from

necessity

(N.B. this is a toy

AN » Lack of order at small scales,

m ) point

should have f order at large enough scale
Yy many

neighbors) o

. What we can distinguish

/ experimentally (i.e. topology) seems
! to be linked to how precisely we want

to distinguish (i.e. geometry)

Current mathematical tools have a hard
division between topology and geometry

Need new math?
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Takeaways

* Real numbers can be recovered from an idealized metrological model

* Ordering of values comes from the ordering logical structure
e 3 < 5 precisely because “there are less than 3 items” < “there are less than 5 items”

* The hard part is the ordering, not the “continuity”

* The difference between reals and integers is, as one intuitively expects, the ability to
always find something in between two references

* Completeness of the ordering is implied by the topology

e Failure of the idealization under real numbers would lead
to a structure much richer (and more complicated)
than a linear order
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Ensemble spaces
(generalized state spaces)




I Principle of scientific reproducibility. Scientific laws describe relationships that can
always be experimentally reproduced.

= Scientific laws are relationships between ensembles

A physical theory must AT LEAST
S |hitial ensemble describe which ensembles are
possible within the theory

Preparation
procedure

Physical
process

v

Final ensemble

Measurement
procedure

Statistical data

v
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State space Ensembles

Classical discrete X = {x{,x,, ...} E={p| Xipi =1}

Phase space
Symplectic manifold 1 n
| . E={p€L(R")]

Classical continuum X = {R*™, w

{ ) J pdq™dp, = 1}

rojective complex
ilbertspace. € = { positive semi-definite

Quantum mechanics X = P(H)  Hermitian with tr(p) = 1}
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Axiom 1.4 (Axiom of ensemble). The state of a system is represented by an ensemble,
which represents all possible preparations of equivalent systems prepared according to the
same procedure. The set of all possible ensembles for a particular system is an ensemble

space. Formally, an ensemble space is a 1y second countable topological space where each
element is called an ensemble.

Experimental verifiability = topological space

Topology is responsible for handling
limits and infinite operations

All other axioms are on finite elements
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Axiom 1.7 (Axiom of mixture). The statistical mizture of two ensembles is an ensemble.
Formally, an ensemble space £ is equipped with an operation + : [0,1] x & x & - & called
maxing, noted with the infix notation pa + pb, with the following properties:

P | q " - y T i

Statistical mixtures = Convex structure

pa + pb

— Only finite mixtures ),i-, p;e; are guaranteed
|
I
! per + (1 —ple;

Topology tells us which
g infinite mixtures ),;2, p;e; converge

l.e. where experimental verifiability converges

&

|

|

| . :

I NB: the theory of topological vector spaces is well developed,
but not the theory of topological convex spaces
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Axiom 1.21 (Axiom of entropy). FEvery element of the ensemble is associated with an
entropy which quantifies the variability of the preparations of the ensemble. Formally, an
ensemble space € is equipped with a function S : € - R, defined up to a positive mul-

tiplicative constant representing the unit numerical value. The entropy has the following
properties:

e Continuity®

Ensembles represent a collection of preparations which are, in general, not identical

Variability: how similar are the preparations within an ensemble?

&

Entropy is a measure of variability
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e Strict concavity: S(pa+pb) > pS(a) + pS(b) with the equality holding if and only

ifa=b

S(pa + pb)

Average variability /
b

before mixture

pS(a) + pS(b)

Final variability will be greater than average
variability before mixture

If we mix an ensemble with itself, the variability is unchanged

Variability
after mixture
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e Upper variability bound: there exists a universal function I(p1,p2) (i.e. the same
for all ensemble spaces) such that S(pa+pb) <I(p,p)+pS(a)+pS(b); if the equality

holds, a and b are non-overlapping or orthogonal, noted a 1 b

d

before mixture

pS(a) + pS(b)

Average variability /
b

Maximum increase when the ensembles are
“completely different”

Increase is only a function of the mixing coefficient

S(pa + pb)

Variability
after mixture
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e Mixtures preserve orthogonality® a L b and a L ¢ if and only if a L pb + pc for
any p € (0,1)

d

If a has no elements in common with b or c,
it has no elements in common with any mixture
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Axiom 1.21 (Axiom of entropy). FEvery element of the ensemble is associated with an
entropy which quantifies the variability of the preparations of the ensemble. Formally, an
ensemble space € 1s equipped with a function S : € - R, defined up to a positive mul-
tiplicative constant representing the unit numerical value. The entropy has the following
properties:

e Continuity”

e Strict concavity: S(pa +pb) > pS(a) + pS(b) with the equality holding if and only
ifa=b

e Upper variability bound: there exists a universal function I(p1,p2) (i-e. the same
for all ensemble spaces) such that S(pa+pb) < I(p,p)+pS(a)+pS(b); if the equality
holds, a and b are non-overlapping or orthogonal, noted a 1 b

o Mixtures preserve orthogonality’ a 1L b and a L c if and only if a L pb + pc for

any p € (0,1)

Ensemble variability = Entropy

No standard theory of entropic spaces

&
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Axiom 1.4 (Axiom of ensemble). The state of a system is represented by an ensemble,

which represents all possible preparations of equivalent systems prepared according to the
same procedure. The set of all possible ensembles for a particular system is an ensemble

space. Formally, an ensemble space is a Iy second countable topological space where each

I Axiom 1.7 (Axiom of mixture). The statistical mizture of two ensembles is an ensemble.

Axiom 1.21 (Axiom of entropy). Ewvery element of the ensemble is associated with an
entropy which quantifies the variability of the preparations of the ensemble. Formally, an

These axioms specify very minimal necessary
requirements on physical theories

How much can we derive just from these?

Physical mathematics starts with minimal requirements to force us to understand
which requirements are truly independent and truly necessary

Here are a few things we are able to derive...
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The entropy upper bound I(p, p) is uniquely determined

Theorem 1.25 (Uniqueness of entropy). The entropy of the coefficients I(p,p) is the
Shannon entropy. That is, I(p,p) = —k (plogp + plogp) where k > 0 is the arbitrary mul-

tiplicative constant for the entropy. For a mizture of arbitrarily many elements, I({p;}) =
—K 2.; pi log pi.

Shannon entropy

Maximal increase in variability during mixing

Let’s see how it works
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Pick a; all orthogonal to each other Uniform mixture of n X m elements

S(xipia;) = 1(p;) + XipiS(a;)

i R N

S ——ai =1
(;g—;“mjk/ \
=S — —dk =7
(§n£m3/ \

S

™ i | Uniform mixture over n
(I ({_} ) +),—S (ajk)) uniform mixtures of m elements
m 't=]_ k:]_ m
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Pick a; all orthogonal to each other Uniform mixture of m elements
B N 1

SQipia;) =1(p;) + X;piS(a;) EEmmE -
vml)(pr) i /////////////% EEEEEE

2.2 Must be the same

t=1 5= 1m m )=

2
15

=rklogm+ )’ i %S(aij)

i=14=1
i m; mi ~ % n mn ﬁ i i
s(Em S L) o ({Z) )+ B (B A :
oy L)™) ™1 Rational distribution over
-1 Zlr({) )+ 3 s . )
(pikir) + gm( m; ) -1 +;mz~ (aj)) uniform mixtures of grouped elements
nom; 1™ " om; 21
oy Py ({_} Py g
({pi}tic1) Z} o ;mgmi (ai5)
n m™m; 1
=I({pi}i: 1)+prilogm +2,0, =S (ai)
=1 =15=1

klogm =1 ({pi}i) + ) piklogm;
1=1
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T
rlogm =1 ({pi};q) + ) piklogm,
i=1

T TL Tl
I ({pi}ieq) = klogm - sz'f‘ﬂl()g m; = Zpr,.;ﬁ:l()g m — Zpiﬁlog m;
i=1 i=1 i=1

= - pirlog— = -y p;logp;.
i=1 m i=1
From now on,

_ _ _ . logpisbase?2
I(p,p) = —plogp —plogp

Proof “does not know” whether we are dealing with
classical ensembles, guantum ensembles, or ensembles

for a theory yet to be discovered

m

Proof is short (about two pages)
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Two ways to define “exclusive” ensembles

Separate ensembles Orthogonal ensembles

aThb & alb

No “common component” C € &£ Saturate upper entropy bound

suchthat <~ pict+pi€; S(pa +rﬁb) = I(p:ﬁ) +pS(a) +158(b)
b = pac + pares

Coincide in classical Different in quantum

ensemble spaces ensemble spaces Simple but powerful
I, definitions from

A A ) basic axioms

disjoint support

https://assumptionsofphysics.org/

Assumptions

¥ )
Phifsics

36



Vector space constraints
from entropy




Definition 1.42. A convex space X is cancellative if pa+ pe = pb+ pe for some p e (0,1)
implies a = b.

Theorem 1.43 (Ensemble spaces are cancellative). Let & be an ensemble space. Let a,b,e €
E such that pa + pe = pb + pe for some pe (0,1). Then a=b.

Entropy bounds force mixing to be “invertible”

a,e =b =T'Cl+77b

Definition 1.53 (Affine combinations). Let {e;}, € & be a finite sequence of ensembles
and {ri}i-; € R be a finite sequence of coefficients such that ¥I., ri = 1. The affine com-
bination ;L rie; is, if it exists, the ensemble a € £ such that Y.y ~te; = a+ Y1 e
where I ={ie[1,n]|r;i >0} and r = Y;cy7i.

&

Can define affine combinations (i.e. negative probabilities)
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Definition 1.55 (Ensemble differences). Given an ensemble space, a difference between
two ensemble represents the change required to transform one ensemble into another. For-
mally, an ensemble difference, noted r(b—a), is a triple formed by a real number r e R
and an ordered pair of ensembles a,be &.

Theorem 1.65 (Differences from a vector space). Let a € £ be an interior point and let
V ={[r(b-a)]} be the set of equivalence classes of ensemble differences from a. Then V
18 a vector space under the scalar multiplication and addition.

Definition 1.69. Given an internal point a, the natural embedding of £ into V, is the
map Ly : € = Vi, defined as 1a(e) - [(e—2a)], that maps each ensemble to its difference from
a.

Vector space operations

Ensemble spaces embed ; e
into vector spaces 72N

a §c+§b=a

, )

1(c—a) =—-1(b—a)

2

(o

N
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Definition 1.50. A line A € £ is a convex subset such that for any three elements one
can be expressed as a mixture of the other two. That is, for all e1,ex,e3 € A there exists a
permutation o :{1,2,3} - {1,2,3} and pe€ [0,1] such that e,(1y = pe,(2) + Py (3)-

Theorem 1.52 (Lines are bounded). Let A ¢ € be a line. Then we can find a bounded
interval V € R and an invertible function f: A -V such that f(pa+ pb) = pf(a) + pf(b)
for all a,be A.

Ensemble spaces are bounded
in all directions

Entropy

Fix three points /7

_~
(i.e. origin, blue ’ T
and red points) /// //
2 L = -
_— /
‘ 2 14 16 18 20

Ensembles over a line

Entropy bounds = green
point between blue and
purple curves
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Geometric structures
from entropy




How much does the entropy increase during mixture?

NARRAENRE

MS(a, b) = S(;a + ;b) - (;S(a) + ;S(b))

non-negativity: M S(a,b) >0 )
tdentity of indiscernibles: M S(a,b)=0 < a=b Recovers the Jensen-Shannon

unit boundedness: M S(a,b) <1 divergence (JSD)

maximality of orthogonals: MS(a,b)=1 < alb (bOth classical and quantum)
symmetry: MS(a,b) = MS(b,a)

Pseudo-distance defined from the entropy

(does not satisfy the triangle inequality)
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Entropy imposes a metric on the ensemble space

|delle = \/8M S(e, e + de)

1
ge(e1,0€2) = o (Ie1 + dez]lc — | der]lc — | dezlc)

028
: 96(591.}5&2) = —@(591,582).

Entropy strict concavity means the Hessian is negative definite

Recovers Fisher-Rao information metric
(both classical and quantum)
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2
S(e+de)=S(e)+ @5{3 + 16—55e(5e +0(6e?)

2 Je? Another direct calculation

i from the definitions
MS(e,e+de) = S( e+ — (e+(5e))——S(e) > S(e+ de)

—S(e+ —6e) — —S(e) — —S(e+6e)

95 1 18251
S( )+£§59+5@—56 (SE'FO((se )

2
— —S(e) - — (S(e) + @(k + li—f(Se&e + O(ﬁeB))
e

108 1828
=S(e) + §a6e+—@5e5e

10S . 18°S \
- S(E) — 5%56 — E@(SE(SE + O((Se )

10%S 5
=2 @(5&5& +O(de”).

82

de|? = 8M de) =
[de]|* = 8M S(e, e + de) “5e2

(e, de).
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Measure theoretic structures
from entropy




In classical mechanics the entropy of a uniform distribution py over U

is S(py) = log u(&
Count of states

(Phase-space volume)

In ensemble spaces, entropy is the primitive notion. Can we
define a notion of count of states that recovers the classical
expression, but makes sense in the general theory, including
guantum mechanics?

Note: given the set of all distributions with support U,
the uniform distribution maximizes the entropy
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We can think of an ensemble as spread over distinguishable cases

J\ A

The number of distinguishable cases must increase with entropy

FARAN

During mixing, the number of distinguishable cases at most sums

Note:

Proposition 1.153 (Exponential entropy subadditivity). Let e;,eq € £. Let S1 = S(ey) and
So = S(e3). Let e = pey + pey for some pe [0,1] and S = S(e). Then 2° < 251 + 252 with the

. . . 89
equality if and only if e1 and ez are orthogonal and p = quﬁ?
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Proposition 1.153 (Exponential entropy subadditivity). Let e;,eq € £. Let S1 = S(ey) and
So = S(e3). Let e = pey + pey for some pe [0,1] and S = S(e). Then 2° < 251 + 252 with the

equality if and only if e1 and ez are orthogonal and p =

Maximum increase when ensembles are orthogonal.
Find p that maximizes entropy:
d . d o _
0=—S(pa+pb)=— (—plogp—plogp+pS, + pSp)
dp dp
=—logp—-1+logp+1+S,-S5

log j—i =log 9% _ log 25
p

25
= 10 —
1-p  °25%

p2% = (1 -p)2°

p(2%s +2%) = 25

zo=
" 25425

log

p

Again, simple calculation that does not depend on type of space

2°1
9Sa 95k
p=1-— - =z -
2% + 25 25 4+ 2%
S(pa+pb) =-plogp—plogp+ pSa + pSp
233 23,1 23'5 st
= T35 125 835 2% 2425 B S 1 0%
53 ] Sp ]
Then calculate P s log2% + — = 1og 2%
: 25 + 25 25 + 25
final entropy: 9Sa Sy

log (25“ + 23'5) +

28& " QSb lOg (250, + 236)

" 25 + 25

25 4+ 25

~ 254 + 25

log 25(Pa+Pb) = 10 (28"' - 23")

QS(pa-#ﬁb) — QS'CL + 235

log (25“ + 23'5)
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Given a set of possible ensembles A, the count of configurations is the exponential of the maximum entropy reachable
using mixtures. If A is the set of classical distributions over a particular support U, the maximum entropy is given by

the uniform distribution = recovers the usual count of states! If A is the set of density matrices that has zero eigenvalues
outside of a subspace H, the state capacity recovers the dimensionality of the space = count of distinguishable states!

Definition 4.133. Let Ac & be a subset of an ensemble space. The state capacity of A
is defined as scap(A) = sup(25™WA) | {0}). '\
capacity also name

of a non-additive measure
Proposition 4.134. The state capacity is a set function that is

non-negative: scap(A) € [0, +o0]

monotone: A€ B = scap(A) < scap(B)

subadditive: scap(Au B) < scap(A) + scap(B)

additive over orthogonal sets: A 1 B = scap(Au B) =scap(A) + scap(B)

™ Lo o

fuzzy measure

State capacity is a non-additive measure »
additive over orthogonal sets
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Mixture Probability

[ p O
'g / 0 &
g P2 . o
9 Ensemble P03
a \ﬂn\ o

n

In classical mechanics, mixtures of preparations and probability of outcomes always coincide

In quantum mechanics, they do not

= quantum ensemble spaces not simplexes (i.e. classical probability fails)

Can we have common measure theoretic tools
on the preparation side?
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How much of e is a mixture of other ensembles? e =p(;1;ia;) +pb

Definition 1.83. Let e;a € £ be two ensembles. The fraction of a in e is the greatest \
mizing coefficient for which e can be expressed as a mixture of a. That is, frace(a) =

sup({pe€|0,1]|3be & s.t. e=pa+ pb}). biggest p

Definition 1.85. Let e€ £ be an ensemble and A € £ a Borel set. The fraction capac-
ity of A for e is the biggest fraction achievable with convexr combinations of A. That is,

fcap,(A) = sup(frace(hull(A))u {0}).

Proposition 1.87. The fraction capacity for an ensemble is a set function that is

1. non-negative and unit bounded: fcap,(A) € [0,1]
2. monotone: Ac B == fcap,(A) < fcap.(B)

3. subadditive: fcap (A u B) < fcap(A) + fcap (B)
4

. continuous from below: fcap.(lim A;) = lim fcap.(Ai) for any increasing sequence
T— 00 T— o0

{4:}
5. continuous from above: fcap.(lim A;) = lim fcap,(A;) for any decreasing sequence
i—r0o0 1—r00
A
A} fuzzy measure %

Fraction capacity is a non-additive probability measure
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Takeaways

* The principle of scientific reproducibility requires the notion of ensembles

* We can develop a theory of states and processes using ensembles
* Few physically justifiable starting points lead to a rich structure
* Many definitions and proofs can be generalized in this setting

* These notions provide a core foundation that can link to various standard
mathematical theories
» Topological vector spaces are the foundation of modern functional analysis

* Information geometry can be shown to link to symplectic geometry
of classical mechanics and the inner product of qguantum mechanics

* Non-additive measures provide a generalization of classical
measure theoretic structures

e Still a lot of work that needs to be done
to complete the theory
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Wrapping it up

* Physical mathematics: derive the math required from physical requirements
* In physics, mathematics is used to model physical systems, therefore we need mathematics that is

designed specifically for that purpose
* Principle of scientific objectivity: science deals with evidence-based assertions

* Requires notion of verifiable statements
* Leads to topological spaces (open sets corresponds to verifiable statements) and o-algebras
(Borel sets correspond to statements associated with tests)

e Real numbers can be derived by modeling an idealized reference system

* Principle of scientific reproducibility: scientific laws describe reproducible

relationships

e Requires notion of ensembles

* Ensembles must be experimentally well-defined, allow statistical mixture
and be associated with an entropy (that quantifies the variability
of the instances of an ensemble;O

* Recovers notions of vector spaces, geometry and measure theory

* Hopefully this shows that we can build
the required math from the ground up
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