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Main goal of the project

- >
Identify a handful of physical starting points from
which the basic laws can be rigorously derived =
Assumptions
For example: PH&SiCS
Infinitesimal reducibility = Classical state Irreducibility = Quantum state https://assumptionsofphysics.org
‘ ?3

tinle time

This also requires rederiving all mathematical structures

For example: from physical requirements

Science is evidence based = scientific theory must be characterized by
experimentally verifiable statements = topologies and o-algebras

https://assumptionsofphysics.org/

Assunflptions
Physics


https://assumptionsofphysics.org/

Standard view of the foundations of physics

Goal of physics is to find the
true laws of the universe!

A
approximation

|II

The “real” physics!

Everything else
is an approximation

Weak interactions QED -Electromagnetism

The foundations
of physics!

QCD - Strong Interactions Electro-weak

General Relativity Grand Unified Theory

What “really” happens Measurement problem

Theory of Everything

&

Hidden variables Role of the observer

Ontology of observables

Perfect description of the universe Dark matter/energy https://assumptionsofphysics.org/
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We found:

Experimental verifiability = topologies and o-algebras
Geometrical structures < Entropic structures
Hamiltonian evolution & det-rev/isolation + DOF independence
Massive particles and potential forces & ¥ Kinematic eq

Physical requirements and assumptions drive most of the theoretical apparatus

Goal o ics4#T0 find the Goal of physics is to find models
true la jverse! that can be empirically tested

Less productive point of view More productive point of view

https://assumptionsofphysics.org/
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Our view of the foundations of physics

General physical principles
and requirements

Specific assumptions | SEEEEaaEE

- derivation

l specialization

General mathematical framework

Classical
mechanics

Quantum
mechanics

Thermodynamics

Foundations of
physics
()
The theory of
physical models

&

https://assumptionsofphysics.org/
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Find the right overall concepts

Reverse physics:

Start with the equations,
reverse engineer physical
assumptions/principles

Found Phys 52, 40 (2022)

Reverse Physics Physics

Smallest set of .
i . . Physical result/
assumptions required to Physical theory o
. effect/prediction
rederive the theory

Reverse Mathematics Mathematics

Smallest set of axioms .
. Mathematical result/
required to prove the Theorem llary/calculati
theorem corollary/calculation

Goal: find the right overall physical concepts, “elevate” the discussion from mathematical constructs to physical principles

Physical mathematics:
Start from scratch and rederive
all mathematical structures from
physical requirements

Goal: get the details right, perfect one-to-one map between mathematical and physical objects

Physics _l

Semantics

Physical
requirements

Physical
mathematics

&

https://assumptionsofphysics.org/
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The fundamental misunderstanding
in the foundations of physics

ttttt ://assumptionsofphysics.org/

Assumptions
of © .
Physics




Prevalent attitude among physicists

Math is a just tool for calculation,
whose technical details are better left to mathematicians

But we don’t develop theories by writing down assumptions and then derive
observable consequences in a sequence of theorems and proofs. In physics, theories
almost always start out as loose patchworks of ideas. Cleaning up the mess that physicists
generate in theory development, and finding a neat set of assumptions from which the
whole theory can be derived, is often left to our colleagues in mathematical physics—a

branch of mathematics, not of physics. . _
Sabine Hossenfelder — Lost in Math

Even those that work on the math,
they work on it as mathematicians

&

https://assumptionsofphysics.org/
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We use mathematics to specify our models, not just
calculations, and specifying physical models is the
whole point of physics

Also, there is no single way to “clean up the mess”: each axiom
and definition represents a choice in mathematical modeling

Those are physical choices, which
mathematicians are ill-equipped to make

soweendupwith TR WRONG MATH

https://assum ptionsofphysics.org/
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Examples of
unphysical mathematics




In differential geometry, tangent vectors are derivations

v: C®(X) - C®(X) v = v'0;
compint \asis

In polar coordinates

0, +0g =277

d ’ ' '
[m]  [rad] Doesn’t work with units

In phase space

0, +0, =227

[m] [Kgms™]

Mathematically precise # physically precise

https://assumptionsofphysics.org/
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Hilbert

Quantum states represented by L? .-

Different observers see
finite/infinite expectation

y = tan (g erf(x))

o) = |2 [ [pl2dx =1

1 YO =9@ |7
(X%)y = 5

Expectation can have
finite-to-infinite oscillations

1
¢(Y) — \/n(yz n 1) f|¢|2dx =1

\ x(xg,t) = xg cos? %t + tan (g erf(xo)) sin? %t
(Y2)¢ — o J

Every continuous linear operator defined on the whole Hilbert space is
bounded = position/momentum/energy/number of particles are not
defined on the whole Hilbert space!!!

qu()’) = T(y2 + 1)

https://assumptionsofphysics.org/
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Physical world Mathematical representation

(informal system) (formal system)

|

|

|

|

|

|

|

|

I

i |
\S:Jtiijmed i ® well-defined

| .

objects @ @ ] O mathema.tlcal
® \ [ 4 | \ objects

|

|

o ° ¢ / | O
) L O
? e ] '
il-defined ! ill-defined

ill-define i

|

1

Current state of the art in theoretical physics

https://assumptionsofphysics.org/
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Mathematical representation

(formal system)

Physical world

(informal system)

well-defined
physical
objects

well-defined
,,,,,,,,,,,,,,,,,,, mathematical
““““““““ objects

1

Mathematical definition

Physical specifications

A mathematical definition is physical if it captures and
only captures an aspect of the physical system

https://assumptionsofphysics.org/
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Mathematicians have developed
standards of rigor for their discipline

What standard of rigor should
we have for physical mathematics?

For the math part, the same as mathematics

What should we do for the physics part?

ttttt ://assumptionsofphysics.org/
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I Axiom 1.7 (Axiom of mixture). The statistical mizture of two ensembles is an ensemble. I Informal intuitive statement
(something that makes sense to a physicist or an engineer)

https://assumptionsofphysics.org/
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Axiom 1.7 (Axiom of mixture). The statistical mizture of two ensembles is an ensemble. Informal intuitive statement

Formally, \an ensemble space £ is equipped with an operation + : [0,1] x E x € — & called (something that makes sense to a physicist or an engineer)
mixing, noted with the infir notation pa + pb, with the following properties:

o Continuity: the map +(p,a,b) — pa + pb is continuous (with respect to the product
topology of [0,1]xE x &)

Identity: 1a+0b=a

Idempotence: pa+pa=a for all pe[0,1]
Commutativity: pa + pb = pb + pa for all p E(D, 1]

Associativity: pie; +py (%’)eg + Eeg = P

Formal requirement
(something a mathematician will find precise)

%el + (%)ez) +paeg where py +p3 <1

https://assumptionsofphysics.org/
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Axiom 1.7 (Axiom of mixture). The statistical mizture of two ensembles is an ensemble.
Formally, |an ensemble space € is equipped with an operation + : [0,1] x E x & - & called
maxing, noted with the infix notation pa + pb, with the following properties:

o Continuity: the map +(p,a,b) — pa + pb is continuous (with respect to the product
topology of [0,1]xEx &)

Identity: 1a+0b=a

Idempotence: pa+pa=a for all pe[0,1]
Commautativity: pa +pb = pb + pa for all p E(ﬂ, 1]

A ssociativity: pje) +p; ((E)Eg + Eeg) = iy

%el + (%)ez) + paeg where p; +p; <1

| Justification.| This axiom captures the ability to create a mixture merely by selecting

P’ or I%. All possible preparations of such a procedure will form an ensemble. Th
we are justified in equipping an ensemble space with a mixing operation that takes

mumber from zero to one, and two ensembles.
Airran that Tnamner renraaarnts an avnermmartal ralastianehim. and 2l ermerirresnt sl

-/

Clear idea of what
\ " is being modelled
I pe; + (1 —p)e;

Informal intuitive statement
(something that makes sense to a physicist or an engineer)

Formal requirement
(something a mathematician will find precise)

Show that the formal requirement
follows from the intuitive statement

https://assumptionsofphysics.org/

Assumptlons
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Axiom 1.7 (Axiom of mixture). The statistical mizture of two ensembles is an ensemble. Informal intuitive statement

Formally, \an ensemble space £ is equipped with an operation + : [0,1] x E x € — & called (something that makes sense to a physicist or an engineer)
mixing, noted with the infir notation pa + pb, with the following properties:

o Continuity: the map +(p,a,b) — pa + pb is continuous (with respect to the product
topology of [0,1]xE x &)

Identity: 1a+0b=a

Idempotence: pa+pa=a for all pe[0,1]
Commutativity: pa + pb = pb + pa for all p E(D, 1]

Associativity: pie; +py l (%")EQ + ;‘;i:e;.;) = 3 %el + (%)Eg) + paes where py +p3 <1

Formal requirement
(something a mathematician will find precise)

Given that mixing represents an experimental relationship, and all experimental rela-

tionships must be continuous in the natural topology, mixing must be a continuous function.
Note that p is a continuously ordered quantity, where no value is perfectly experimentally Show that the formal requ irement
verifiable, and therefore the natural topology is the one of the reals. This justifies continnity. follows from the intuitive statement

Justification uses previous findings

Physical mathematics must
-\ start with most basic structures
I pe; + (1 —p)e;

-/

https://assumptionsofphysics.org/
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Axiom 1.7 (Axiom of mixture). The statistical mizture of two ensembles is an ensemble. Informal intuitive statement

Formally, \an ensemble space £ is equipped with an operation + : [0,1] x E x € — & called (something that makes sense to a physicist or an engineer)
mixing, noted with the infir notation pa + pb, with the following properties:

o Continuity: the map +(p,a,b) — pa + pb is continuous (with respect to the product
topology of [0,1]xE x &)

Identity: 1a+0b=a

Idempotence: pa+pa=a for all pe[0,1]
Commutativity: pa + pb = pb + pa for all p E(D, 1]

Associativity: pie; +py ((%)eg + Eea) = P

Formal requirement
(something a mathematician will find precise)

%El (E)Eg)-l-pqEq where p; +p3 < 1

It p = 1, the output ot 1’ will always be the output ot /’. This justities the identity
property. If I’y and [% are the same process, then the output of I will always be the
output of /7. This justifies the idempotence property. The order in which the processes are Show that the formal requirement
given does not matter as long as the same probability is matched to the same process. The follows from the intuitive statement
process I? is identical under permutation of /?, and [%. This justifies commutativity. 1f we
are mixing three processes I°), % and I3, as long as the final probabilities are the same,
it does not matter if we mix 7} and [% first or [% and [’;. This justifies associativity. [

AN

D3 4 N e P
L (1—p1)<1—1_p1>—1 pr—p3=(1 P3)<1 1—p3>

-\ 'pe1+(1 pe; Properties justified by
-/' understanding the model

https://assumptionsofphysics.org/
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Axiom 1.7 (Axiom of mixture). The statistical mizture of two ensembles is an ensemble. Informal intuitive statement

an ensemble space £ is equipped with an operation + : [0,1] x € x € — £ called (something that makes sense to a physicist or an engineer)
mixing, noted with the infir notation pa + pb, with the following properties:

o Continuity: the map +(p,a,b) — pa + pb is continuous (with respect to the product

topology of [0,1]xE x &) _
Identity: 1a+0b=a Formal requirement

Idempotence: pa+pa =a for all pe[0,1] (something a mathematician will find precise)
Commutativity: pa + pb = pb + pa for all p E(D, 1]

Associativity: pie; +py (%”)EQ - ;‘%"ER = iy

2+ (B )er) oy where 1 s <1

It p =1, the output of {7 will always be the output of f. L'his justifies the identity
property. If I’y and [% are the same process, then the output of I will always be the
output of /7. This justifies the idempotence property. The order in which the processes are Show that the formal requirement
given does not matter as long as the same probability is matched to the same process. The follows from the intuitive statement
process I? is identical under permutation of /?, and [%. This justifies commutativity. 1f we
are mixing three processes I°), % and I3, as long as the final probabilities are the same,
it does not matter if we mix [’ and % first or I’ and [’3. This justifies associativity. [

There is no question as to what the math describes
The properties are justified by, are a consequence of, what the model describes

Every math proof can be understood physically

= The math describes and only describes , _ .
physically meaningful concepts It’s physical mathematics

https://assumptionsofphysics.org/

Assurrflptions
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The goal of physical mathematics is to |
recover ALL mathematical structures used Physics

in physics from clear physical requirements

Physical :
.y Semantics
requirements
Clarify realm of applicability of each mathematical structure
Perfect map between math and physics Physical
Provide a generalized structure for all physical theories mathematics

It’s a better way to do physics

It forces you to think a lot deeper about physics, what it means to have an

experimentally based theory, what it means to define a state, what is entropy
or energy, ...

&

It’s not jUSt a “math thing” https://assumptionsofphysics.org/

Assumptions
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Takeaway

* It is possible to define the starting points of our physical theories so that they
are both mathematically precise and physically meaningful (and philosophically
consistent)

* Physical mathematics: mathematical structures justified by the physics
* Justifications provide a new standard of rigor for physical theories

* Only mathematical structures that are justified by unavoidable physical
requirements can serve as truly foundational structures

* All physical theories must satisfy those requirements

* = Foundations of physics is not “guessing” what the physical
world is “made of,” but articulating in a precise way what
physical theories are

https://assumptionsofphysics.org/
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Logic of experimental verifiability
U

topologies and o-algebras




Principle of scientific objectivity. Science is universal, non-contradictory and evidence

based.

= Science is about statements that are associated to experimental tests

Statements must be

either true or false for
everybody \

Statement Test Result
two-valued logic SUCCESS (in finite time)
! UNDEFINED
UNDEFINED

Verifiable
statement

FAILURE (in finite time)

Test Result

T

F

SUCCESS (in finite time)
UNDEFINED
FAILURE (in finite time)

Tests may or may not terminate
— (i.e. may be inconclusive)

three-valued logic

&

https://assumptionsofphysics.org/
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Axioms of logic

Axiom 1.2 (Axiom of context). A statement s is an assertion that is either true or false.
A logical context S is a collection of statements with well defined logical relationships.
Formally, a logical context S is a collection of elements called statements upon which is
defined a function truth: S — B.

Axiom 1.4 (Axiom of possibility). A possible assignment for a logical context S is a
map a:S — B that assigns a truth value to each statement in a way consistent with the
content of the statements. Formally, each logical context comes equipped with a set As € B
such that truth € As. A map a:S — B is a possible assignment for S if a € As.

Axiom 1.9 (Axiom of closure). We can always find a statement whose truth value arbi-
trarily depends on an arbitrary set of statements. Formally, let S €S be a set of statements
and fg :BS - B an arbitrary function from an assignment of S to a truth value. Then we
can always find a statement s € S that depends on S through fg.

Lead to standard logic
(i.e. Boolean algebra)

two-valued logic

Lead to intuitionist logic
(i.e. Heyting algebra)

Axioms of verifiability

Axiom 1.27 (Axiom of verifiability). A verifiable statement is a statement that, if true,
can be shown to be so experimentally. Formally, each logical context S contains a set of
statements S, € S whose elements are said to be verifiable. Moreover, we have the following
properties:

e cvery certainty T € S is verifiable
e cvery impossibility 1 € S is verifiable
e a statement equivalent to a verifiable statement is verifiable

Axiom 1.31 (Axiom of finite conjunction verifiability). The conjunction of a finite collec-

tion of verifiable statements is a verifiable statement. Formally, let {s;}; €S, be a finite

n
collection of verifiable statements. Then the conjunction A s; € Sy is a verifiable statement.
i=1

Axiom 1.32 (Axiom of countable disjunction verifiability). The disjunction of a countable
collection of verifiable statements is a verifiable statement. Formally, let {s;}2, € S, be a

countable collection of verifiable statements. Then the disjunction \/ s; € S, is a verifiable
i=1

statement.

three-valued logic
https://assumptionsofphysics.org/
Assumptions
of & .
Physics
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Axiom 1.27 (Axiom of verifiability). A werifiable statement is a statement that, if
true, can be shown to be so experimentally. Formally, each logical context S contains a

set of statements S, € S whose elements are said to be verifiable. Moreover, we have the
following properties:

e cvery certainty T € S s verifiable
e cvery impossibility 1 € § 1s verifiable
e a statement equivalent to a verifiable statement is verifiable

Remark. The negation or logical NOT of a verifiable statement is not necessarily a
verifiable statement.

S sy Test Result
0 T SUCCESS (in finite time)
- FAILURE (in finite time)
UNDEFINED %
experimental test T Testsare not part of the formal system ||

https://assumptionsofphysics.org/
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Axiom 1.31 (Axiom of finite conjunction verifiability). The conjunction of a finite collec-
tion of verifiable statements is a verifiable statement. Formally, let {s;}; €S, be a finite

n
collection of verifiable statements. Then the conjunction A s; € S, s a verifiable statement.
i=1

Conjunction (AND) of verifiable statements:
check that all tests terminate successfully

= Only finite conjunction is guaranteed to terminate
__________________ ‘ A (e;):

|
| |
A | | 1. Runallg;
/\_ S | | 2. If all succeed, return SUCCESS
e | | 3. Return FAILURE

All tests must succeed

https://assumptionsofphysics.org/
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Axiom 1.32 (Axiom of countable disjunction verifiability). The disjunction of a countable
collection of verifiable statements is a verifiable statement. Formally, let {s;}:°; €S, be a

countable collection of verifiable statements. Then the disjunction \V s; € S, s a verifiable
i=1
statement.

Disjunction (OR) of verifiable statements:
check that ONE test terminates successfully

watch out for non-termination!

= Only countable disjunction can reach all tests

________________________ Vv (e;):

% | | 1. Initializento 1

\/S, | | 2. Foreachi=1..n

v b | a) Run e; for n seconds
B | |

———————————————————————— b) If e; succeeds, return SUCCESS
One successful test is sufficient 3. Incrementn and go to 2

https://assumptionsofphysics.org/
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Definition 1.34. Given a set D of verifiable statements, B € D 1is a basis if the truth
values of B are enough to deduce the truth values of the set. Formally, all elements of D
can be generated from B using finite conjunction and countable disjunction.

Definition 1.35. An experimental domain D represents a set of verifiable statements
that can be tested and possibly verified in an indefinite amount of time. Formally, it is a
set of statements, closed under finite conjunction and countable disjunction, that includes

precisely the certainty, the impossibility, and a set of verifiable statements that can be
generated from a countable basis.

D
Bi{el, €-, €3, }

Countable basis

Only finite conjunction and countable disjunction

\

Sl — (81 V 63) 7A\ 62

https://assumptionsofphysics.org/
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Definition 1.36. The theoretical domain D of an experimental domain D is the set of
statements constructed from D to which we can associate a test regardless of termination.
We call theoretical statement a statement that ts part of a theoretical domain. More

formally, D is the set of all statements generated from D using negation, finite conjunction
and countable disjunction.

Extend the domain to include all statements that are
associated with a test, regardless of termination.

All statements depend on the verifiable statements
(which depend on the basis)

No new information is captured

https://assumptionsofphysics.org/
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Definition 1.47. A possibility for an experimental domain D is a statement x € D
that, when true, determines the truth value for all statements in the theoretical domain.
Formally, x # L and for each s € D, either x <s or x #s. The full possibilities, or simply
the possibilities, X for D are the collection of all possibilities.

A possibility of a domain is a statement that 51|53 | 53| X1 | X | Xp | X
T T F T T F F F

picks one assignment

FF
Possibilities: experimentally defined alternative = F T
T F

.
.
cases defined by the verifiable cases "

T F T
F F F
T F F

FF
T F
FooT

Proposition 1.48. Let D be an experimental domain. A possibility for D is any minterm
of a basis that is not impossible.

&

https://assumptionsofphysics.org/
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Theoretica Topology and o-algebra

domain Dy
int(A) corresponds to the verifiable
) a Theoretical statements ) s; Test Result part of a statement
Experimental
domain D SUCCESS (in finite time)
X Verifiable T :
ctatements . Possibilities UNDEFINED 0A corresponds to the undecidable
part of a statement
UNDEFINED
F
FAILURE (in finite time) ~~___ ext(A) corresponds to the falsifiable
Topology Ty part of a statement

Borel sets

Experimentally
defined cases X
Borel algebra Zx Perfect map
between math
Open set (509.5, 510.5) < Verifiable “the mass of the electron is 510 + 0.5 KeV” an d p hyS ICS

Closed set [510] < Falsifiable “the mass of the electron is exactly 510 KeV”

Borel set Q (int(Q) U ext(Q) = @) < Theoretical “the mass of the electron in KeV is a rational number” (undecidable)

https://assumptionsofphysics.org/
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Maximum cardinality of distinguishable cases

Each point identified by truth of
countably many verifiable stmts Correspond to binary expansion

FTFFFTTTF : 0.0100011101011... 1 1
TFFTTFTTFFFTF Most we can test over 01001101100010

arbitrarily long time

Set of distinguishable cases

FTFFFTTFTFFTEF... 0.0100011010010...
. FTTFTFTTFTFFT... 0.0110101101001...
Correspondence to binary sequence + 0
0100011101011.. 1X| < |R]|
1001101100010...

0100011010010...

0110101101001...

* Sets with éreater cardinality (e.g. the set of all discontinuous
functions from R to R) cannot represent physical objects

* Issues about higher infinities (e.g. large cardinals) are not relevant,
but those surrounding the continuum hypothesis may be

https://assumptionsofphysics.org/
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Power set vs Borel algebra

Using the set 2R™ of all possible subsets for R™ is problematic

Notion of size (i.e. measure)
cannot be defined on all sets

Using non-measurable sets leads
to the Banach-Tarski paradox

wikipedia

These problems are avoided if we restrict ourselves to Borel sets

= |f we restrict ourselves to experimentally definable objects,
these paradoxes are avoided

Physical mathematics can give insight
to these foundational issues in mathematics

https://assumptionsofphysics.org/
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An isamap 7:Dy » Dy suchthat 7(s) = s

e.g. the water temperature
is between 0 and 0.52
Celsius or between
7.6 and 9.12 Celsius

e.g. the water density is
between 999.8 and
° 999.9 kg/m?3

e.g. the water temperature

e.g. the water density is
is exactly 4 Celsius

exactly 1 kg/m3

Water Temperature vs. Density

A isamap f: X - Y such that x < f(x)

p (mgfem?)

€ Dy 10000
T 1) Two domains admit an inference relationship
if and only if they admit a causal relationship
T L W 2) The causal relationship must be a continuous
“lep, map in the natural topology

999.85

https://assumptionsofphysics.org/
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_of_Permeability_Uncertainty_During_Three-phase_CO2_Flow_in_a_Basalt_Fracture_Network

earchgate.net/publication/326492803_Implications.

Figure from https://www.res

Phase transition regions are

Why functions are well-behaved experimentally decidable &

Topologically isolated regions S
100.0 16 &
i § super-critical A _a“ 14 =
i & liquid '®) 'O ) S
» N (¢0) ) :
= 10.0 liquid Q S 10 Py
& 1 o © 2 s
- 3 critical 25 o ® g 3
pg - ; point Q + £ o
= 4 solid e n 5o} E:
z - (\\“‘“ () Q ‘E 6 =3
£ a Q < 2 3
& 1.0 5 - & 4 [ =
3 Q @
1 aper @ g :
i \\\\* iple Q ; %
- \\e‘ ant 3 0 2
1 -100 0 100 200 300 3
; 3
0.1 T
FX LANED FES E LT IO emperature (C)

-80 =70 -60 -50 -40 330 20 -10 0 10 20 30 40 S50 60 70 80
Temperature (°C)

Topological continuity # Analytical continuity

We can verify we are at the triple point  Analytical discontinuity
We measure the equilibrium of three phases, can on |y ha ppen Ta
not the pressure/temperature .

Before 2019, the triple point of water was used to define the kelvin, the base unit of thermodynamic temperature in the International reg I O n S t h a t a re
System of Units (S1).1°] The kelvin was defined so that the triple point of water is exactly 273.16 K, but that changed with the 2019

revision of the S1, where the kelvin was redefined so that the Bolizmann constant is exactly 1.380 649 x 10723 JVI-(’1, and the triple eX p e ri m e n ta I I y d e C i d a b | e

point of water became an experimentally measured constant.

https://assumptionsofphysics.org/

Assunflptions
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Takeaway

* Requiring experimental verifiability in a physical theory leads to topologies and
o-algebras

* Open sets correspond to verifiable statements, continuous functions preserve
experimental verifiability, Borel sets correspond to statements associated with tests, ...

* All proofs can be understood as describing arguments on experimental
verifiability
 Limits (truth sequences of verifiable statements become constants), topological

distinguishability (experimental distinguishability), interior/exterior/boundary
(verifiable/falsifiable/undecidable), ...

* Further constructions become more meaningful

* Probability measure defined on o-algebra: we assign probability
to statements with a test; topological groups: transformations we
can experimentally identify/define; ...

https://assumptionsofphysics.org/
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It is possible to develop a foundation of physics
that is both mathematically rigorous

and physically meaningful

The mathematical definitions ARE the physical requirements and assumptions

Mathematical representation No issues of “interpretations”

(formal system)

Physical world

(informal system)

Clear realm of applicability of

well-defined well-defined
R N R — mathematical mathematical tools
e A Y A - R objects

Physical specifications ﬁ Mathematical definition

&

https://assum ptionsofphysics.org/
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There is no “just math”

Either the math represents Or it doesn’t, and therefore it
physical objects, then it’s should be stripped away from
describing physics the physical theory

Only by understanding the full details of
the math and physics (and philosophy)
can you make that determination

&

If you do not know what the well-ordering of the reals is, you are precisely a

. el . . ] . https://assum ptionsofphysics.org/
person that cannot determine whether it is physically significant or not
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Wrapping it up

e Assumptions of Physics: different approach to the foundations of physics

* No interpretations, no theories of everything: physically meaningful starting points from
which we can rederive the laws and the mathematical frameworks they need

* Physical theories are models
* Need to clarify exactly what the realm of applicability of each model is

* Physical mathematics: derive the math required from physical requirements
* |In physics, mathematics is used to model physical systems, therefore we need

mathematics that is designed specifically for that purpose

* You need to start at the lowest level of mathematics

* Rigor, precision, meaning, correctness cannot be “sprinkled on top”

* “Big systems that work evolve from small systems that work,
never from big systems that do not work” (Gall’s law)

https://assumptionsofphysics.org/
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To learn more

* Project website
 https://assumptionsofphysics.org for papers, presentations, ...

* https://assumptionsofphysics.org/book for our open access book
(updated every few years with new results)

 YouTube channels

 https://www.youtube.com/@gcarcassi
Videos with results and insights from the research

 https://www.youtube.com/@AssumptionsofPhysicsResearch
Research channel, with open questions and livestreamed work sessions

e GitHub

 https://github.com/assumptionsofphysics
Book, research papers, slides for videos...

https://assumptionsofphysics.org/
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