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Main goal of the project

- >
Identify a handful of physical starting points from
which the basic laws can be rigorously derived =
Assumptions
For example: PhO£78iCS
Infinitesimal reducibility = Classical state Irreducibility = Quantum state

https://assumptionsofphysics.org

o ©

This also requires rederiving all mathematical structures
from physical requirements

o—©

time time

For example:

Science is evidence based = scientific theory must be characterized by
experimentally verifiable statements = topology and o-algebras
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Foundations of

Underlying perspective Found: Foundations of
mathematics

Physical reality
What can be accessed
experimentally

Metaphysical reality
What really exists

Philosophy
of science

What is the boundary?
_ , What are the requirements?
Physical theories

Empirical reality

Idealized account
of empirical reality What can be reliably
studied experimentally

How exactly does the abstraction/idealization process work?

R
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If physics is about creating models of empirical
reality, the foundations of physics should be a
theory of models of empirical reality

Requirements of experimental
verification, assumptions of each theory,
realm of validity of assumptions, ...
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Typical approaches

Our approach

Find ultimate theory

T approximation

Weak interactions
QCD - Strong Interactions Electro-weak

QED -Electromagnetism

Construct interpretations

Measurement problem Role of the observer

Quantum

I
|
I
I
|
I Contextuality
I
I
I
|

Local realism
mechanics General Relativity Grand Unified Theory
Ontology of observables What “really” happens Theory of Everything

|

A theory about I I
phys|ca| models and requirements |
|

|

|

|

|

|

|

|

|

mechanics mechanics

— ¥ derivation

l specialization
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Find the right overall concepts

Reverse physics:

Start with the equations,
reverse engineer physical
assumptions/principles

Found Phys 52, 40 (2022)

Reverse Physics Physics
Smallest set of .
assumptions required to - Physical theory ‘ Physical re-su!t/
i effect/prediction
rederive the theory

Reverse Mathematics Mathematics

Smallest set of axioms \
: Mathematical result/
required to prove the Theorem I lculati
theorem corollary/calculation

Goal: find the right overall physical concepts, “elevate” the discussion from mathematical constructs to physical principles

Physical mathematics:
Start from scratch and rederive
all mathematical structures from
physical requirements

Goal: get the details right, perfect one-to-one map between mathematical and physical objects

Physics _l

Semantics

Physical
requirements

Physical
mathematics

A 4

R

https://assumptionsofphysics.org/

Assumptions
of & .
Physics




This session

Physical Mathematics:
Foundational Structures

Assumptions of Physics,
Michigan Publishing (v2 2023)



Formal system for physics




Formal system:

orimitive notions e.g. Euclidean geometry

Basic objects that are taken as-is, E.g. Points and lines
without definition in terms of other objects

formal language

Symbols and rules to write sentences E.g. A, B, C for points
in the formal system AB for segment
aXioms
Statements about primitive objects that E.g. Given two points, %
are to be taken as true there is a line that joins them L

https://assumptionsofphysics.org/




Formal system for all of mathematics:

Sets + first-order logic
+ Zermelo—Fraenkel axioms (+ axiom of choice)

Formal system for all of physics:

277
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Problems in formalizing physical concepts

Physical objects live in the
physical (informal) world

(e.g. connection to experiment \ I nfo Fma I

|
|
|
is outside of the formal system) :
|
|
|
|

Mathematical concepts

Formal are “crisper idealizations”

physics math /
Physical concepts IR ‘
are “fuzzy” . / Mathematical concepts cannot
* ““““““ have circular definitions
Physical concepts may have T 1l$‘ @ /
circular definitions 9y
Some concepts will Choose axioms/primitive
have to remain informal notions so that the

justification is straightforward

https://assumptionsofphysics.org/
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|H

cuiding princiole  YWat should our primitive “informal” notion be?

.
Principle of scientific objectivity: science is universal,

non-contradictory and evidence based.

Suggest logic as fundamental ...

Universal = same for everybody ‘/A/ ke mathematics!
Non-contradictory — something is either true or false

Evidence based — truth is determined experimentally
\

... With some extensions

R

= Logic of experimentally verifiable statements!
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Not “verifiable statements”
Chocolate tastes good (not universal)
It is immoral to kill one person to save ten (not universal and/or evidence based)
The number 4 is prime (not evidence based)
This statement is false (not non-contradictory)
The mass of the photon is exactly 0 eV (not verifiable due to infinite precision)

“Verifiable statements”
The mass of the photon is less than 10713 eV

If the height of the mercury column is between 24 and 25 millimeters then its temperature
is between 24 and 25 Celsius

If | take 2 + 0.01 Kg of Sodium-24 and wait 15 + 0.01 hours
there will be only 1 + 0.01 Kg left

A scientific theory needs “at least” the concept of a
verifiable statement: good primitive notion

https://assumptionsofphysics.org/
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Takeaways

* A good part of physics must remain informal

* Formal part is “precise” because it represents only an idealized part

* Pragmatic considerations as to what is formalized

* We take verifiable statements as the basic building blocks of our formal system

https://assumptionsofphysics.org/
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Space of the well-posed scientific theories

Physical theories

iltoni ' ializations of the general
Hamiltonian Unlta.ry Quantum Sﬁeca a':jo Sho ;-fi genera
Classical mechanics evolution state-space theory u.n er the different
assumptions
phase-space

f

States and processes General theory

Information granularity

Basic requirements and
definitions valid in all theories

5

Experimental verifiability
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Axioms of logic
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Axiom 1.2 (Axiom of context). A statement s is an assertion that is either true or false.
A logical context S is a collection of statemnents with well defined logical relationships.
Formally, a logical context S is a collection of elements called statements upon which is
defined a function truth : S — B.

Axiom 1.4 (Axiom of possibility). A possible assignment for a logical context S is a

s | sy | s |
g T T F map a: S — B that assigns a truth value to each statement in a way consistent with the

content of the statements. Formally, each logical context comes equipped with a set As C BS
T F T >— CAS such that truth € As. A map a:8 — B is a possible assignment for S if a € As.

a

T F F

Axiom 1.9 (Axiom of closure). We can always find a statement whose truth value arbi-
trarily depends on an arbitrary set of statements. Formally, let S € S be a set of statements
and fz :B° > B an arbitrary function from an assignment of S to a truth value. Then we
can always find a statement s € S that depends on S through fg.

51| 53| s3]
T T F
2
T F T

T F F F
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I Definition 1.1. The Boolean domain is the set B = {FALSE, TRUE} of all possible truth

values.

. _ , _ o Informal part
Axiom 1.2 (Axiom of context). A statements is an assertion that is either true or false. | . —

A logical context S is a collection of statements with well defined logical relationships.
Formally, a logical context S is a collection of elements called statements upon which is
defined a function truth:S — B.

T Formal part

Justification. As science is universal and non-contradictory, it must deal with assertions
that have clear meaning, well-defined logical relationships and are associated with a unique

Informal Formal

math

physics

A

——

Gabriele Carcassi - University of Michigan

Each axiom/definition has two parts:

* Informal part: tells us what elements in the physical world
we are characterizing

* Formal part: how the elements are
characterized mathematically

Each axiom/definition has a justification:
argues why the mathematical
characterization follows from the
physical one

R

https://assumptionsofphysics.org/

Assumptions
of & .
Physics

18




I Definition 1.1. The Boolean domain is the set B = {FALSE, TRUE} of all possible truth

values.

. . , , o Informal part
Axiom 1.2 (Axiom of context). A statements is an assertion that is either true or false. ‘ -
A logical context S is a collection of statements with well defined logical relationships.

Formally, a logical context S is a collection of elements called statements upon which is
defined a function truth:S — B.

‘ T Formal part

Justification. As science is universal and non-contradictory, it must deal with assertions
that have clear meaning, well-defined logical relationships and are associated with a unique

Informal Formal

math

physics

A

Gabriele Carcassi - University of Michigan

Axiom: brings objects from the informal to the formal

Definition: further specializes formal objects

Axioms/definitions should be formulated
so that they are easy to justify...

... hot so that they follow trends in
mathematics

R
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I Definition 1.1. The Boolean domain is the set B = {FALSE, TRUE} of all possible truth

values.

. _ , _ o Informal part
Axiom 1.2 (Axiom of context). A statements is an assertion that is either true or false. ‘ -
A logical context S is a collection of statements with well defined logical relationships.

Formally, a logical context S is a collection of elements called statements upon which is
defined a function truth:S — B.

‘ T Formal part

Justification. As science is universal and non-contradictory, it must deal with assertions
that have clear meaning, well-defined logical relationships and are associated with a unique

Informal Formal

math

physics

A

Gabriele Carcassi - University of Michigan

Physical objects are made “mathematically precise” by
throwing out everything that can’t be made precise

Syntax, grammar, meaning, ... can’t be made
precise, so are not part of the formal system

= Statements are primitive objects

R
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Definition 1.1. The Boolean domain is the set B = {FALSE, TRUE} of all possible truth
values.
Axiom 1.2 (Axiom of context). A statement s is an assertion that is either true or false.

A logical context S is a collection of statements with well defined logical relationships.
Formally, a logical context S is a collection of elements called statements upon which is

defined a function truth:S — B.

Justification. As science is universal and non-contradictory, it must deal with assertions
that have clear meaning, well-defined logical relationships and are associated with a unique

L Informal part

T Formal part

In mathematics, primitive objects (i.e. those that are left unspecified) must be elements of a

set. The logical context, then, has two functions:

1) in the formal system, it is the “container” for the
primitive objects (i.e. the statements)

2) in the informal system, consistency/semantics/... are
properties of groups of statements (i.e. of the context)

Gabriele Carcassi - University of Michigan

R
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I Definition 1.1. The Boolean domain is the set B = {FALSE, TRUE} of all possible truth
values.

) _ , _ o Informal part
Axiom 1.2 (Axiom of context). A statements is an assertion that is either true or false. | . —
A logical context S is a collection of statements with well defined logical relationships.
Formally, a logical context S is a collection of elements called statements upon which is
defined a function truth:S — B. ————— Formal part

Justification. As science is universal and non-contradictory, it must deal with assertions
that have clear meaning, well-defined logical relationships and are associated with a unique

A statement here represents the assertion and not the sentence that declares the assertion.
Therefore the translation of a sentence into another language represents the same statement.

Technically, we only assume the existence of valid statements for doing
science. Therefore statements are also primitives in the informal system.

But if they exist, they must follow the axioms we are going to specify.

R
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I Definition 1.1. The Boolean domain is the set B = {FALSE, TRUE} of all possible truth
values.

_ , _ o Informal part
Axiom 1.2 (Axiom of context). A statement s is an assertion that is either true or false. ‘ -
A logical context S is a collection of statements with well defined logical relationships.

Formally, a logical context S is a collection of elements called statements upon which is

defined a function truth:S — B. ‘ ————— Formal part

Justification. As science is universal and non-contradictory, it must deal with assertions
that have clear meaning, well-defined logical relationships and are associated with a unique

The existence of a truth function stems from the assumption of non-contradiction and

umversahty' Every statement must be either true or false for everybody.

5)
sy | sy | ss | se s | e |7l se S0 |
F T T F T T F

truth T T

R

Context = big table where statements are columns
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Note: the semantic content constrains the possible
combinations of truth values

“that animal is a “that animal is a “that animal is
cat” mammal” a bird”
T T T

> impossible

|
T T -
T - T
- T -
- - T
- - -

The only semantics captured by the formal system is the
set of possible combinations of truth values

Gabriele Carcassi - University of Michigan
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Axiom 1.4 (Axiom of possibility). A possible assignment for a logical context S is a
map a : S — B that assigns a truth value to each statement in a way consistent with the
content of the statements. Formally, each logical context comes equipped with a set As € BS
such that truth € As. A map a:S — B is a possible assignment for S if a € As.

s s s |
T T F

a

truth
F F T
As — P2
a3 F T

Possible assignments are those assignments consistent
with the meaning (semantics) of the statements

Context = big table where statements are columns
and possible assignments are rows

R
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Definition 1.6. Statements are categorized based on their possible assignments.

o A certain statement, or certainty, is a statement T that must be true simply because
of its content. Formally, a(T) = TRUE for all possible assignments a € Ag.

o An impossible statement, or impossibility, is a statement L that must be false simply
because of its content. Formally, a(L) = FALSE for all possible assignments a € Ags.

o A statement is contingent if it s neither certain nor impossible.

Corollary 1.7. A statement s € § can only be exactly one of the following: impossible,
contingent, certain.

“that catis a “that mammalis | “that mammal is
mammal” acat” a bird”

T T F
T F F
certain contingent impossible

Certainties and impossibilities have
the same truth value in all rows

Gabriele Carcassi - University of Michigan

R
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Definition 1.6. Statements are categorized based on their possible assignments.

o A certain statement, or certainty, is a statement T that must be true simply because
of its content. Formally, a(T) = TRUE for all possible assignments a € Ag.

o An impossible statement, or impossibility, is a statement L that must be false simply
because of its content. Formally, a(L) = FALSE for all possible assignments a € Ags.

o A statement is contingent if it is neither certain nor impossible.

Corollary 1.7. A statement s € § can only be exactly one of the following: impossible,
contingent, certain.

Whether a statement is certain or
contingent depends on context!

the mass of the electron is 510 + 0.5 KeV

e N

Contingent when measuring

Certain when performing
the mass of the electron

particle identification

Gabriele Carcassi - University of Michigan

R
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Some statements depend on other statements

That animal is a mammal | " That animal has feathers
patible

That animal is a cat That animal is a bird
\ independent

That animal is black

negation

That animal is not black

= possible assignments determine
the logical relationship

https://assum ptionsofphysics.org/
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Equivalent Independent

“that animal has “that animal is a T | F “that animal is a “that animal is T | F
feathers” bird” TV ox cat” black” T v |v

T T i Ml I T T i I
T F T F
F T F T
F F F F

Incompatible

“that animal is a “that animal is a T F
mammal” bird” T x|V
v

-
<

o=
|

s M -
Mm — M

https://assumptionsofphysics.org/
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Definition 1.15. Two statements s; and s2 are equivalent s| = so if they must be equally
true or false simply because of their content. Formally, s1 = so if and only if a(s1) = a(s2)

for all possible assignments a € As.

51 | 52| 53| 54| 55| 56|57
2 E 5 £ & Y I Corollary 1.16. All certainties are equivalent. All impossibilities are equivalent.
T T T T F T T

Corollary 1.18. Statement equivalence satisfies the following properties:

o reflerivity: s=s
o symmetry: if s; = s9 then so =51
o transitivity: if s =so and sg = s3 then s; = s3

and is therefore an equivalence relationship.

— 4 ™ =
M M M m
— <4 ™
m 4 m -
m 7 4 -
4 4 44 -
-4 4 44 -

\E/‘

From now on, unless otherwise stated, by
statement we mean an equivalence class of
statements

Gabriele Carcassi - University of Michigan

R
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I Definition 1.20. Given two statements s; and so, we say that:

e s; is narrower than sy (noted sy < sg) if so is true whenever sy is true simply
because of their content. That is, for all a € As if a(s1) = TRUE then a(sz) = TRUE.

e s; is broader than sy (noted sy >s3) if so < s1.

e s; is compatible to sy (noted s; = s3) if their content allows them to be true at the
same time. That is, there exists a € As such that a(s1) = a(s2) = TRUE.

The negation of these properties will be noted by ¥, ¥ , # respectively.

51 sy |53l salss sl syl
T T T T F T T .

— 4 ™ ™
m M M m
— m T
m H4 m™ -
m T - -
—4 4 d -
=4 ™ <4 -

a
»

Gabriele Carcassi - University of Michigan

That animal is a mammal R That animal lays eggs

That animal is a cat < That animal is a mammal

https://assumptionsofphysics.org/
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Proposition 1.23. Statement narrowness satisfies the following properties:

o reflexivity: s<s
e antisymmetry: if sy <sg and so <51 then s = s
e transitivity: if s; < sz and s2 < s3 then sy < s3

and is therefore a partial order.

Narrowness < is related to material implication — but:

Material implication is a logical operation that returns a new statement:
a—>b=-=-aVb(i.e.NOT(a) ORb)

Narrowness < is a binary relationship between statements

The order imposed by narrowness allows us to understand
the context as an order theoretic structure

R
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NOTE: AND, OR and NOT (A,V, —)
are operations within the context

Equivalence, narrowness, compatibility, ... (5, <, R, ...)
are not: they describe the context (i.e. metalanguage)

R
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Definition 1.8. Letse S be a statement and S € S be a set of statements. Then s depends

on S (or it is a function of S) if we can find an fg:B° - B such that

a(s) = fe({a(s) }ses)

for every possible assignment a € As. We say s depends on S through fg. The relationship

is tllustrated by the following diagram:
s | s s
o T T F

a; F F T

as T F F S1 AND (SZ OR Sg)

|
S

s1="“that animal is a cat”

so="“that animal is a mammal”

s3="that animal is a bird”

a1(5) = fe(ai(s1), a1 (sz), a1(s3))
az(5)= fp(az(s1), az(s2), az(s3))
az(5)= fe(az(s1), as(s2), az(s3))
Folomrrn)

https://assumptionsofphysics.org/
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Axiom 1.9 (Axiom of closure). We can always find a statement whose truth value arbi-
trarily depends on an arbitrary set of statements. Formally, let S € S be a set of statements
and fg:B° - B an arbitrary function from an assignment of S to a truth value. Then we
can always find a statement s € S that depends on S through fg.

Not sure whether it is needed as an
axiom: the closure may be proven to
exist and be unique.

51 sy | S5 s s |
e T

T T F
F F T
FF T ENDICKOED
T F F
T F T

m T M m
m < ™ -

R
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Corollary 1.10. Functions on truth values induce functions on statements. Formally, let
I be an index set and fg : B! - B be a function. There exists a function f:S! - S such
that

a(f({si}iel)) = fB({a(si)}z’eI)

for every indexed set {s;}ic; €S and possible assignment a € As.

fovszss) s 1 ls
T T F T e T

ji
S1 AND (SZ OR 53)

— -4 T
M M M M
- T - -
M M M M
m -4 T -

R
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Definition 1.11. The negation or logical NOT is the function —: B — B that takes a
truth value and returns its opposite. That 1s: =TRUE = FALSE and —FALSE = TRUE. We also
call negation —: S - § the related function on statements.

EREAEEEAEIEAEA®E  That animalis a cat
T T T T|E|T|E[T|T|-

F F B

That animal is not a cat

— 4 ™ =M
M M M m
— m <4 -
m 4 m -
m mm 4 -
M M M M
— H4 ™ =

R
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Definition 1.12. The congjunction or logical AND is the function A : BxB - B
that returns TRUE only if all the arguments are TRUE. That is: TRUE A TRUE = TRUE and
TRUEAFALSE = FALSEATRUE = FALSEAFALSE = FALSE. We also call conjunction A : §x8 - S
the related function on statements.

- That animal That animal

is a cat is black

A

That animal is a black cat

T F F
F T F
F F F

M M M m
— m <4 -
m 4 m -
m mm 4 -
M M M M

g
:
.
.

— <4 T M
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Definition 1.13. The disjunction or logical OR is the function v : B xB — B that
returns FALSE only if all the arguments are FALSE. That is: FALSE V FALSE = FALSE and
TRUE V FALSE = FALSE V TRUE = TRUEV TRUE = TRUE. We also call disjunction v :S5xS - S

the related function on statements.

- That animal That animal

T F T
F T T
F F F

— 4 ™ =M
M M M m
— m <4 -
m 4 m -
m mm 4 -
M M M M

Gabriele Carcassi - University of Michigan

- < M =

IS a cat

v

That animal is a cat or a dog

is a dog

R
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Corollary 1.19. A logical context S satisfies the following properties:

associativity: av (bve)=(avb)ve,an(bac)=(anb)ac
commutativity: avb=bva,anb=bnra

absorption: av (anb)=a, an(avb)=a

identity: avli=a, anT=a

distributivity: av (bac)=(avb)A(ave), an(bve)=(and)v(anc)
complements: av-a =T, aA-a =1

De Morgan: —=a v -=b=-(aAb), -an-b=-(aVvb)

Therefore S is a Boolean algebra by definition.

Recovers the standard structure for classical logic

Note how many properties are part of the definition of a Boolean algebra: if
that had been our starting point, we would have had to justify every single one,
which is cumbersome and not particularly enlightening

Gabriele Carcassi - University of Michigan

R
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Functions in a Boolean algebra have a standard representation important for us

mq, My, M3, My each picks a line of the table, and

mm can be expressed as the conjunction that takes
T T F T T F F F

S1,S7,S3 once, negated or not

ELE|T | Tl E| TR CE my = s; A sz A=is3
F T T F F F T F My =i ATS2 AS3 minterms
ms3 = 151 ASZAS3
T F F T F F F T My = Sy A 1Sy A 1S3
S is a function of s¢, 5, S3 S is the disjunction of m{, m,, m,

S = (Sl NSy A\ _|S3) \% (—|S1 A =Sy A S3) \% (Sl A =Sy A _|53)

disjunctive normal form

R
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Takeaways

* Semantics define which assignments are possible on a given context
* The possible assignments define the logical relationships and operations

* The possible assignments describe “what could happen”, which is inherently
tied to the model

e Certainty, equivalence, narrowness, etc... are all metaconcepts about the theory

* TODOs

e Statement equivalence should be defined before functions on statements
(technically, they should be operations on equivalence classes)

https://assumptionsofphysics.org/
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Axioms of verifiability
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Axiom 1.27 (Axiom of verifiability). A verifiable statement is a statement that, if
true, can be shown to be so experimentally. Formally, each logical context & contains a
set of statements S, C S whose elements are said to be verifiable. Moreover, we have the
following properties:

o cvery certainty T € S is verifiable
o cvery tmpossibility 1 € S is verifiable
e q statement equivalent to a verifiable statement is verifiable

Remark. The negation or logical NOT of a verifiable statement is not necessarily a
verifiable statement.

n | '
| |
|

/\Si | |

. | |

1= | |

All tests must succeed

Si

-

=1

Axiom 1.32 (Axiom of countable disjunction verifiability). The disjunction of a countable
collection of verifiable statements is a verifiable statement. Formally, let {s;}22, €S, be a
countable collection of verifiable statements. Then the disjunction \ s; € S, is a verifiable

statement. .

C. A. Aidala - G. Carcassi - University of Michigan

s; Test Result

T SUCCESS (in finite time)
FAILURE (in finite time)
UNDEFINED

experimental test

Axiom 1.31 (Axiom of finite conjunction verifiability). The conjunction of a finite collec-
tion of verifiable statements is a verifiable statement. Formally, let {s;}I"; €S, be a finite

n
collection of verifiable statements. Then the conjunction A s; € S, is a verifiable statement.
A

e e — — — — — — — — — — — — — — — — — — — — —

———— — — — — — — — — — — — — — — — — — — — — —

One successful test is sufficient
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Axiom 1.27 (Axiom of verifiability). A verifiable statement is a statement that, if true,
can be shown to be so experimentally. Formally, each logical context S contains a set of
statements S, € S whose elements are said to be verifiable. Moreover, we have the following

properties:

e cvery certainty T € S s verifiable
e cvery impossibility 1 € S is verifiable
e a statement equivalent to a verifiable statement is verifiable

New axiom to bring in the idea that some statements are experimentally verifiable

statement experimental test Statements are verifiable if there is a

\ / test that always terminates
successfully if the statement is true

UNDEFINED
UNDEFINED

UNDEFINED

R

Tests may or may not terminate
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Axiom 1.27 (Axiom of verifiability). A verifiable statement is a statement that, if true,
can be shown to be so experimentally. Formally, each logical context S contains a set of
statements S, € S whose elements are said to be verifiable. Moreover, we have the following

properties:

e cvery certainty T €S is verifiable
e cvery impossibility 1 € S is verifiable
e a statement equivalent to a verifiable statement is verifiable

The tests are not objects in the mathematical framework

Defining tests formally is cumbersome
Capturing which statements are verifiable is enough

Formally we are only “tagging” which statements are verifiable

Only need to tag the verifiable statements:
all other tests can be constructed from those

Gabriele Carcassi - University of Michigan

R
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Axiom 1.27 (Axiom of verifiability). A verifiable statement is a statement that, if true,
can be shown to be so experimentally. Formally, each logical context S contains a set of
statements S, € S whose elements are said to be verifiable. Moreover, we have the following

properties:

e cvery certainty T €S is verifiable
e cvery impossibility 1 € S is verifiable
e a statement equivalent to a verifiable statement is verifiable

Certainties and impossibilities are defined to be true and false, therefore
a trivial test that always succeeds or fails is adequate

If two statements are equivalent, the termination conditions on the tests
are the same = we can use the same test

R
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Remark. The negation or logical NOT of a verifiable statement is not necessarily a
verifiable statement.

—S e_(e)

UNDEFINED >< UNDEFINED

From e, we can construct the test e_ (e) that switches SUCCESS with FAILURE,
but the non-termination remains

e_(e):
1. Runteste
2. If e fails, return SUCCESS

3. If e succeeds, return FAILURE

= the logic of verifiable statements
does not include negation!
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Definition 1.28. A falsifiable statement is a statement that, if false, can be shown
to be so experimentally. Formally, a statement s s falsifiable if its negation —s € Sy is a
verifiable statement.

Statements are falsifiable if there is a
test that always terminates with
failure if the statement is true

UNDEFINED

Note that formally falsifiable is
defined to be the negation of :fes:ﬁiixecgmﬁg
verifiable statements

= The justification must show these definitions to be equivalent
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Definition 1.28. A falsifiable statement is a statement that, if false, can be shown
to be so experimentally. Formally, a statement s s falsifiable if its negation —s € Sy is a
verifiable statement.

Suppose —is is verifiable. Then From e, we can construct the test e_ (e) that
we can find a test such that switches SUCCESS with FAILURE
\ / e_(e):
1. Runteste
S =S e e_(e) 2. If e fails, return SUCCESS

3. If e succeeds, return FAILURE

UNDEFINED UNDEFINED

= |f the negation of a statement is
verifiable, then the statement is falsifiable
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Definition 1.29. A decidable statement is a statement that can be shown to be either
true or false experimentally. Formally, a statement s is decidable if s€ S, and -s€ S,. We
denote S4 € S, the set of all decidable statements.

S e
Statements are decidable if thereis a
_ test that always terminates
Note that formally decidable

statements are verifiable statements
whose negation is verifiable

= The justification must show these definitions to be equivalent

https://assumptionsofphysics.org/

Assumptions

Physi
Gabriele Carcassi - University of Michigan ysSIC8 51



Definition 1.29. A decidable statement is a statement that can be shown to be either
true or false experimentally. Formally, a statement s is decidable if s€ S, and -s€ S,. We
denote Sy € S, the set of all decidable statements.

Construct the test é(e, e_)

Suppose s is verifiable. Then we can find A

é(e e_):

1. Initializento 1
Run e for n seconds
If e succeeds, return SUCCESS
Run e_for n seconds
If e_ succeeds, return FAILURE

Increment n and go to 2

a test such that

e é(e,e.)

UNDEFINED

oOu e wWN

UNDEFINED

/

Suppose =s is verifiable. Then we can
find a test such that

= If s and —s verifiable, then the
statement is decidable
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Definition 1.29. A decidable statement is a statement that can be shown to be either

true or false experimentally. Formally, a statement s is decidable if s€ S, and -s€ S,. We
denote S4 € S, the set of all decidable statements.

I Corollary 1.30. Certainties and impossibilities are decidable statements.

. . N o
Certainties and impossibilities are true L eturn SUCCESS
and false by definition. e.:

Yet, we can make trivial tests for them. - return PATLORE
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Axiom 1.31 (Axiom of finite conjunction verifiability). The conjunction of a finite collec-
tion of verifiable statements is a verifiable statement. Formally, let {s;}!; €S, be a finite

i=1 =
T
collection of verifiable statements. Then the conjunction A s; €S, is a verifiable statement.
i=1
Conjunction (AND) of verifiable statements: A
check that all tests terminate successfully 2. If all succeed, return SUCCESS

3. Return FAILURE

= Only finite conjunction is guaranteed to terminate
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Axiom 1.32 (Axiom of countable disjunction verifiability). The disjunction of a countable
collection of verifiable statements is a verifiable statement. Formally, let {s;}:>, €S, be a

countable collection of verifiable statements. Then the disjunction \ s; € S, is a verifiable

i=1
statement.

Disjunction (OR) of verifiable statements: Ve
. 1. Initializento 1
check that ONE test terminates successfully

2. Foreachi=1..n
L a) Run e; for n seconds
watch out for non-termination! ) L

b) If e; succeeds, return SUCCESS
3. Increment n and go to 2

= Only countable disjunction can reach all tests
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Proposition 1.33. The conjunction and disjunction of a finite collection of decidable state-
ments are decidable. Formally, let {s;}I', € S4 be a finite collection of decidable statements.

n m
Then the conjunction A s; € Sq and the disjuction \V s; € Sq are decidable statements.
1=1 1=1

For decidable statements, we need both the
statement and its negation to be verifiable

—|/\ei=V—|ei —|Vel-= /\—|el-

Using De Morgan properties, we can construct tests using test for negation
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Takeaways

* Adding the notion of verifiability only requires tagging which statements are
verifiable

* We are essentially modeling procedures that output success/failure (i.e. one bit)
and may not terminate

* These are the only axioms at this point
e Everything else is a construction on top of this
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Topology and the logic of
experimental verifiability




Experimental verifiability =

Topology and o-algebra topology and o-slgebras

- ~ (foundation of geometry,
Theoretical statements int(A) corresponds to the verifiable probability, ...)
s, Test Result part of a statement
Verifiable possibilit SUCCESS (in finite time) Perfect map
statements ossibilities T .
UNDEFINED . 0A corresponds to the undecidable between math and
art of a statement ;
- t UNDEFINED P physics
F
I 1 FAILURE (in finite time) ~~__ ext(A4) corresponds to the falsifiable

part of a statement NB: in physics, topology and
Open set (509.5, 510.5) < Verifiable “the mass of the electron is 510 £ 0.5 KeV” g-algebra are parts of the

same logic structure
Borel sets Closed set [510] < Falsifiable “the mass of the electron is exactly 510 KeV”

Borel set Q (int(Q) U ext(Q) = @) < Theoretical “the mass of the electron in KeV is a rational number” (undecidable)

Inference relationship #: Dy — Dy such that 7(s) = s

Topologically continuous consistent
Inference relationship with analytic discontinuity on isolated points

= 10005
Causal relationship 1 £ s
g 1009 liguid
Relationships must be Y >
topologically continuous
Causal relationship f: X — Y such that x < f(x) """' I EREPER https://assumptionsofphysics.org/

Temperature (°C)
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What is the largest set of verifiable statements
it makes sense to consider?

Note: even assuming an indeterminate amount of
time, we can only run up to countably many tests

51,592,583, -+, Sy ns

51 V SZJ Sl N\ SZ) However, testing those statements implicitly tests
all other statements that depend on those

= Set of verifiable statements whose truth can
be verified by running countably many tests
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Definition 1.34. Given a set D of verifiable statements, B € D s a basis if the truth
values of B are enough to deduce the truth values of the set. Formally, all elements of D
can be generated from B using finite conjunction and countable disjunction.

Definition 1.35. An experimental domain D represents a set of verifiable statements
that can be tested and possibly verified in an indefinite amount of ttme. Formally, it is a
set of statements, closed under finite conjunction and countable disjunction, that includes

precisely the certainty, the impossibility, and a set of verifiable statements that can be
generated from a countable basis.

D

Bi{el, €-, €3, }

Countable basis

Only finite conjunction and countable disjunction

\

S1 = (el V 83) N\ €r ...
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Definition 1.34. Given a set D of verifiable statements, B € D s a basis if the truth
values of B are enough to deduce the truth values of the set. Formally, all elements of D
can be generated from B using finite conjunction and countable disjunction.

Definition 1.35. An experimental domain D represents a set of verifiable statements
that can be tested and possibly verified in an indefinite amount of ttme. Formally, it is a
set of statements, closed under finite conjunction and countable disjunction, that includes

precisely the certainty, the impossibility, and a set of verifiable statements that can be
generated from a countable basis.

Every physical theory must be fully
characterized by an experimental domain

All its content must be expressible in terms of verifiable statements

The theory must be fully explorable with a countable set of tests
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Definition 1.36. The theoretical domain D of an experimental domain D is the set of
statements constructed from D to which we can associate a test regardless of termination.
We call theoretical statement a statement that is part of a theoretical domain. More
formally, D is the set of all statements generated from D using negation, finite conjunction
and countable disjunction.

Extend the domain to include all statements that are
associated with a test, regardless of termination.

All statements depend on the verifiable statements
(which depend on the basis)

No new information is captured
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Definition 1.39. Lets e D be a theoretical statement. We call the verifiable part ver(s) =
VseD|s<s S the broadest verifiable statement that is narrower than's. We call the falsifiable
part fal(s) = VseD|s#s S the broadest verifiable statement that is incompatible with s. We call

the undecidable part und(s) = —ver(5) A—fal(s) the broadest statement incompatible with
both the verifiable and the falsifiable part.

o rect Rosul ver(s) corresponds to successful termination
Formalizing successful L /
SUCCESS (in finite time)
terminatiOn iS indQEd ! UNDEFINED T und(s) corresponds to non-termination
. UNDEFINED
enough to characterize F

PAILURE (in finite time) ™ f3] () corresponds to failure

termination

https://assumptionsofphysics.org/
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Definition 1.47. A possibility for an experimental domain D is a statement x € D
that, when true, determines the truth value for all statements in the theoretical domain.

Formally, x # L and for each s € D, either x <s or x #s. The full possibilities, or simply
the posstibilities, X for D are the collection of all possibilities.

A possibility of a domain is a statement that 51|53 | 53| X1 | X | Xg | X
T T F T T F F F

picks one assignment

F
Possibilities: experimentally defined alternative F
cases defined by the verifiable cases !

m —H M

T T F T
T F F F
F T F F

FF
T F
FooT

Proposition 1.48. Let D be an experimental domain. A possibility for D is any minterm
of a basis that is not impossible.

R
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Start with a countable set  Add all dependent verifiable statements Add all statements with tests
of verifiable statements (close under finite AND countable OR) / (close under negation as well)

| /

The points of the
space (the
possibilities, the
distinguishable cases)
are not given a priori
but are constructed
from the chosen
verifiable statements

— x =-—e;Aey A—e3zA--- Foreach possible assignment we have a theoretical 1
statement that is true only in that case (minterm).
We call these statements possibilities of the domain.

R

Fill in all possible

assignme nts https://assumptionsofphysics.org/
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S =VyxeyX / —

\, EEEE 12 SIIAMUTEGED CLIE ¢2y Uinsrsenl chompiln 2 Topologies (needed for

e, le, es sy=e; Ve, S,;=eqiNe; manifold/geometric
spaces) and o-algebras
FIF F F F S (needed for integration
ﬁ and probability spaces)
S naturally arise from
ElT ¢ T F @ requiring experimental
= verifiability
T|T F T F g
@]
o
The experimental domain Dy induces a The theoretical domain Dy induces
topology on the possibilities X. a (Borel) o-algebra

R
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Topologies and o-algebras

int(A) corresponds to the verifiable

All definitions and al! proofs 'about thgse s; Test Result part of a statement
structures have precise physical meaning
in thi text T
M IS COntex UNDEFINED . dA corresponds to the undecidable
UNDEEINED part of a statement
F

FAILURE (in finite time) ., ext(A) corresponds to the falsifiable

If U € X is an open set then “x is in U” is a verifiable statement part of a statement

(e.g. “the mass of the electron is 511 + 0.5 KeV”)

If VC X is a closed set then “x isin V" is a falsifiable statement
(e.g. “the mass of the electron is exactly 511 KeV”)

Topologies and o-algebras

If A € X is a Borel set then “x isin A” is a theoretical statement: a each capture part of the
test can be created, though we have no guarantee of termination formal structure

(e.g. “the mass of the electron in KeV is a rational number” is

undecidable, the test will never terminate)

R

For us, they are part of a
single unified structure
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Examples

Standard topology on integers
0) (1 () (32 (5 (6) (. Decidable domain (all statements are decidable)

Discrete topology (every set is clopen); topology and o-algebra both
coincide with the power set

Standard topology on the reals
Finite precision measurements (open intervals are verifiable) ' ' ' ' ' ' —
Topology generated by open intervals (coincides with order and metric
topology); separable, complete, connected (no clopen sets except full and
empty set); o-algebra is the Borel algebra (strict subset of power set)

https://assumptionsofphysics.org/




Examples

Does extra-terrestrial life exist?
Semi-decidable question
Topology {(b, {Y}{y, N}} is strictly Ty; o-algebra is the power set

How many leptons (electron-like particles) are there?

(through direct observation)

Can only measure lower bound (e.g. “there are at least i”)
Topology contains empty set and {i,i + 1,i + 2, ...} for all i; strictly
T,; o-algebra is the power set

R
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Physical meaning of separation axioms

* All topologies are Kolmogorov (i.e. Ty)

* Possibilities are experimentally well-defined
i.e. possibilities constructible from a base by countable AND/OR
and NOT (singletons in the o-algebra)

* The topology is T; if all possibilities are approximately
verifiable

* Possibilities are the limit of a sequence of verifiable statements
i.e. possibilities are the countable conjunction of verifiable
statements

* The topology is Hausdorff (i.e. T,) if all possibilities are
pairwise experimentally distinguishable

* Given two possibilities, we can find a test that confirms one and

excludes the other s _Test Result 5%
* i.e.forany x;,x, € X thereis a statements € Dy . '
such that x; < ver(s) and x, < fal(s) UNDEFINED :

UNDEFINED F https://assumptionsofphysics.org/

F

FAILURE (in finite time) Assumptlons
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Maximum cardinality of distinguishable cases R

Set of distinguishable cases

Test results for countable basis Correspond to binary expansion

FTFFFTTTFTFTT... 0.0100011101011... + 1
TFFTTFTTFFFTEF... 0.1001101100010...
FTFFFTTFTFFTEF... 0.0100011010010...
FITFTFTTFTFFT... 0.0110101101001...
Correspondence to binary sequence 1 0
0100011101011... | X| < |R]
1001101100010...

0100011010010...

0110101101001...

e Sets with %reater cardinality (e.g. the set of all discontinuous
functions from R to R) cannot represent physical objects

* Issues about higher infinities (e.g. large cardinals) are not relevant,
but those surrounding the continuum hypothesis may be

https://assumptionsofphysics.org/
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An isamap 7:Dy = Dy such that 7(s) = s

e.g. the water temperature

is between 0 and 0.52 * ° ° -

Celsius or between ° e.g. the water density is

7.6 and 9.12 Celsius - ° between 999.8 and
*- . 999.9 kg/m?

e.g. the water temperature
is exactly 4 Celsius

e.g. the water density is
exactly 1 kg/m?3

A isamap f: X — Y such that x < f(x)
Two general and important results:
1) Two domains admit an inference relationship if and only if they admit a causal relationship
2) The causal relationship must be a continuous map in the natural topology

https://assumptionsofphysics.org/
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Functions in physics must be “well-behaved”

\

Topologically continuous function
can be analytically discontinuous at a
topologically isolated point

Second countable space
= up to countably many isolated points

= up to countably many discontinuity
= “well-behaved”

100.0

super-critical

We can verify we are in the i

triple point = topologically
isolated point

" T

10.03 liquid

critical
3 vint
solid e P
i

l/urc(.\ﬂ’a)
L1l L LLlll 1 | 52 BN

™~

W/ triple
& point

vapor

&
o,

R,

0.1

=t B0 B FE A el a iy 38
-80 -70 -60 -50 -40 -30 =20 -10 0 10 20 30 40 50 60 70 30

Temperature (°C)

Phase transition < Topologically isolated regions

Internal energy can change
discontinuously through
phase transitions

R
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Takeaway

* The most fundamental mathematical structures (topology and o-algebra) are
there to capture the logic of experimental verifiability

* Precise science/math dictionary
* “Well-behaved” mathematical objects are really “well-defined” physical objects

* Experimental verifiability is the basis for scientifically well-defined objects

* TODOs:

» Space of possible composite experimental domains
e Approximations of domains
* Projections to domains
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Quantities and ordering
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Quantities and ordering  eus scr 95084003 2020

Goal: deriving the notion of quantities and numbers (i.e. integers, reals, ...) from an operational (metrological) model

A reference (i.e. a tick of a <_before _»after Mathematically, it is a triple (b, 0, a) such that:
clock, notch on a ruler, - b and a are verifiable Numbers defined by
sample weight with a scale) *  The reference has an extent (0 # 1) metrological assumptions,
is something that allows us ) « If !t's not before or afte.r, 'It ison (—b A—a <o) NOT by ontological assumptions
to distinguish between a . If it’s before and after, itison (b A a < 0)

before and an after
Dense

The hard part is to

0, IR0z Mo, recover ordering. After
: TRRTPR = (X, ) = (R, <) that, recovering reals
To define an ordered sequence of possibilities, the ’ vering

and integers is simple.

references must be (nec/suff conditions):

Strict Aligned Refinable Sparse
« before c after N . b, a, 0, 0,
0 > X,) =(Z,)
o by a
= (X, S) https://assumptionsofphysics.org/

Assumptions untenable at Planck scale:

i H . u . < nou ” « ” Assumptlons
no consistent ordering: no “objective” “before” and “after

Physics



How do we formally model a quantity?

A reference (e.g. a tick of a clock) is something that allows us to distinguish between a before

and an after . o _
Mathematically, it is a triple (b, 0, a) such that:

b and a are verifiable

* The reference has an extent (o Z 1)

D) * Ifit’s not before or after, itison (=b A =a < 0)
* Ifit's before and after, itison (b A a < 0)

before after

v

P
<

T F F

F T F

F F T

The experimental domain for a T T F
qguantity is a collection of references : I I ntps/fassumptionsofphysics ore
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Imagine collecting the references of all possible clocks
into a single logical structure. What are the necessary
and sufficient conditions such that they identify a point
on the real line?

Intuitively, we would need clocks at higher and higher
resolutions, all perfectly synchronized, ...

https://assumptionsofphysics.org/
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1. Strict references

A reference is strict if before/on/after are mutually exclusive

T F F 0
F T F
F F T O

Physically, the extent of what we measure is assumed
to be smaller than the extent of our reference

https://assumptionsofphysics.org/
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Multiple references

Without further constraints, references
would not lead to a linear order

L Lo |
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Note: the “boundaries” are ordered

The fact that a reference is “before” or //2 \\ 0
“after” another is captured by the ‘ 7 ’
statements’ logical relationship

by 01 a4

L Lo |

Multiple references

Order relationship between references is too restrictive

https://assumptionsofphysics.org/
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2. Aligned references _ *

<

v

Two references are aligned if the before and not-after
statement can be ordered by narrowness/implication

For example, by < b, < =44 < 1a,
< Means that if the first statement is true
then the second statement will be true as well by
That is, the first statement is narrower, more specific

A

v

https://assumptionsofphysics.org/
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Filling the whole region

If two different references overlap, we can’t say one is
before the other: we can’t fully resolve the linear order

b1 01 a4

Conversely, if two references
don’t overlap and there can be

something in between, we must
be able to put a reference there

https://assumptionsofphysics.org/
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3. Refinable references

A set of references is refinable if we can address the . % az
previous two problems and resolve the full space

v

If two references overlap, we can find a reference that
refines the overlap

b2 ar

v

If something can be found between
two references, then there must be
another reference in between

https://assumptionsofphysics.org/

Assumptions
of & .
Physics

Gabriele Carcassi - Physics Department - University of Michigan 85



7 CHAPTER 3. PROPERTIES AND QUANTITIES 3.3. REFERENCES AND EXPERIMENTAL ORDERING 3

Proof. By definition, we have -ba -a <o and by 1.23 ~(~-ba-a)v

vave. O For transitivity, if 1y < 2, we have by v 0; # 03 v 3; and therefore ~(b; v o) 7 03 v a2
by 1.23. Since b v o1 var = T, we have a: = ~(bi v or). Similarly if 2 < rs we'll have
a2 % ~(b2v02) > 0o vas. Putting it all together ~(bi ver) > 02vaz > 32 = ~(b2v0z) ¥ 03V as,
which means b1 v o1 # 03 vas. o

Definition 3.19. A reference r1 = (b1, 01.21) i finer than another reference v = (bz, 02, 32)

5 CHAPTER 3. PROPERTIES AND QUANTITIES 32 QUANTITIES AND ORDERING 5 fbizbs, 01501 andar zan

the possthilities themseives can be ordered, and bow this ordering. m the end, s uniquely
charactorized by statement narrowness 10 bx ke than 42 bocause “the quantity is less than As wo want
10” 1s narrower than “the quandtity is leas then 27, that are flly characterted by a quasntity. For example, the domain for the nsass of a
the dofining charactoristic for a quantity is the ability 1o compare its valucs, then the will be fully characterizod by a roal number groator than or equal to zero. Each posdbility
values must be ordered 1n some fashion from smaller o greater. Therefore, given two different will be identifiod by o sumber which will correspond to the mass oxpressed in a particular
walues, one must be hefore the other. Mathematically, we call linear order an order with such unit, say in Kg As the !'Jl\ﬂ of the mass are ordered, we can wlso say that the possibilities
a charncteristic a wo can I the cloments pasitionod along a line. Noto that wetors thomselves aro ordored. e meae of the syshem . 1. Ky® preceles: "the mase, of the.
are ot Bnearly orderod: bo direction is greater than the other. Thorefore, in this context, & aystem & 2 Kg”. This ordering of the possibilities will bo Bnked 1o the natural topology as.
swetar will nos sirealy be a quantity bt  colleetion of quantitios? “the maxs of the syatem 1 loss than 2 Ko, the disjaction of all possibilties that come before

We also havo 1o define how this oeder can be experimentally vertfied. The iden is that we. a particular pasdbility, s a verifiable statement.
shiould, at keast, be abls 1o varify that the vakue of a given quantity i before or after a st Wo call & nacural order for the postbility  Hnear order on them such that the order
valise. This allows us to construct bounds such as “the mass of the eectron is 511 205 keV" topology is the natural tpology. An experimental domain bs fully charactertzed by a quantity
which wo take 1o be oquivalent 1o “the mass of the electron @ more than 510.5 keV but leas W and only If it Is naturally ﬂlllﬂl«‘] and that quantity is ordered in the same way: it 1s order
than 511.5 keV"3 For imtogers, this also allows us to vorify particular mumbers as *the earth omorphic. In other words, wo can oaly assign a quantity to an experimental domain if it
has one natuml satellite” bs equivalent o the “the earth has more than serv natural sotellites alroady has & natural ordering r‘ the same type.

S et e Tl o ol ol he A W o e B U . "o moasiro & quantity wo will have many zeforences ono afar th other: a rulor vl havo
of the type (a,ce) and (-o0,b) ‘many marks, a scale will have many reference wei clack will keep ticking. Wha does
A quantity, then, Is an ordered property with the order topology. it mean that a reference comes afier another in terms nfllm before/on fafter statements?

If reference r; is before reference r; we expect that if the value measured is before the
first it will also be before the second, and if it is after the second it will also be after the first.
Note that this is not enough, though, because as Teferences have an extent they may overlap. therefore the hefore statement is narrower than the not-afier statement. This means that,
And if they overlap one can't be afier che other. "o have an ordering properly defined we given a set of allzned strict references, the set of all before and not-afier statements Is inearly
must have that the first reference is entirely before the second. That is, if the value measured B e
15 on the first 1t will be before the se

Mathematically, this type of ord:
befare and strietly after. 1t docs no
One may be tempted to define the
requires refining the references and, |
refined roferences, not the original o

ik sllowm g b8 seep sk 0 v A vk v (Corollacv MERTha e slidicasio llemeals e Eicelule metialoniary Corollary 3.24. The relationship Ty < 1, defined to be true if ;< 19 6rm = ™, 15 0

partial order.

Prooj. As the finer relationship is dircetly based on narrowness, It Inhierits its reflexivity,
antisymmetry and transitivity properties and is therefore a partial order o

As we saw, two references may overlap and therefore an ordering between them cannot. be
defined. But references can overlap in different, ways.

Suppase we have a vertical line one millimeter thick and call the loft side the part before
the line and the right side tho part after. We can have another vertical lio of the samo

Deflnition 8.21. A reference is sirict if its bejore, on and after statements are incom-
patible. Formally, v= (b,0.3) s such that b# 2 and 0= -bA-a. A reference is loose if it
is ot strict

Remark. In general, we can't turm a loose reference into a strict one. The on statement
can be made strict by replacing it with ~ba-a. This is possible because  is not required to
be verifiable. The before (and afier) statements would need to be replaced with statements
like b -2, which are not in general verifisble because of the negation.

L4

can be given 2 linear order. The case of the vertical and herizontal line, insiead, cannot
Intuitively, the vertical lines are aligned while the horizontal and vertical are not.

Concapuually, the overlapping vertical lines are aligned becanse we can imagine narrower
lines around the borders, and those lines will be ordered references in the above sense: each
line would be completely before or after, without interseetion. ‘This means that the before and
no-after statements of ene reference are either narrower or broader than the before and not-
aftor statements of the other. That is, alignment can als be defined in terms of narrowness
of statements.

Note that if & reference s strict, before and after statements are not compatible and

Deftnition 3.4. A linear order ou & set Q t o rvlationship <: @ x Q - B such that:

3. PROPERTIES AND QUANTITIES

1. (antisymmetry) @ < a3 ond qy < gy then g, = @y o CHAP
* frtiy o S0 nd 50 e S R R e G S N
‘ordering of the possihilitios/values. These are the very statements whose verifiable secs define
4 vt e i o ol s iy oo sk e cnder gy and theadore lnly oo o b o the seperimental
Now cotsider (] ‘the mass of the dem is lese than or o d
Defnition 3.5. Let (Q.) be o kinarly ordered set. The order topology is the tpol % iy by Sl et b mdindin 8
generated by the collections of sets of the form. the value £ £ with azything les than | Kg woll scill Bave 14 . Instend I wo o & valoo
greater than | Kg wo'd have 5 €35, In other words, if we call B the set that includes both
e loss-than-or-oqual and Joss-than statements this s also linearly ordered by narrowness.
But “the mass of the system ts less than or equel 0 1 Kg” is equivalent to ~ “the mass of
sustern is orater- than 1 Kg”. In other words, B = By ~(B,) contalns all the statements ke Bropediiion 344,58 Da o'« nehil i o basskil domabi Phaw (i
e man ofthe e i e han 0 K3t e s of she iem & e b (B3 il (B14) e Mminly ek ki, Mowiooss (R, (53 o s iy
Ko and these aro all linoarly ordered by narra 0{X.5)
“Thnondeng of B can b hrther characerae, Nota that 5, = the mae of the i
10 o o i 15 7 N 1 a3t res 9 s ke o of W
less than ¢ Ko". That ks, thoy aro differenit and there can't be any other statoment in ll(!h\
1s bronder than s; but marrower than s, since l)w\ differ for & single case. Th\- will happen
e 7 (o, gl for any s vaboe, So 1 Is composed of two
T e o ot gy opdorpudl e

was . necossar:_condition

Definition 3.12. Let Dx be & netorally orderd erperimental domiain and X ts possth
ties, Define By« (“r<n”|m1e X), Bu ("r> 3" |1e X) and B= Bu~(By).
Defnkicn 313, mmqunmﬁn«m Let e Q. Then g3 i en immedic

successor of ¢, is o immediate predecessor of ¢ I there is no clement strk
a.mmmm...wnm., That is, g1 < @ and there i no g Q such that gy < g <
Two clements are consecutive if one is the immediate successor of the other.

(a.00)= {g¢ Qla<q) . (~oo.b)= {ge Qla<h)
L ition A ity for an L

Dyisa
Formally, # 15 o tuple (Q.<.q) where (Q.q) i o property, <:Qx Q + B t o linser or
and Q is a topological space with the onder tapology with respect to <
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by v o) a (b2 v oy van) = ((by voy) aba)v
(b1 v 01) Abz. Therefore by v or £ bz, And

3.3. REFERENCES AND EXPERIMENTAL ORDERING 7

Proof. We have by v oy = (by vor) a7 =
(b ver) Aoz vam)) = ((brvor) aba) v L
since by < by v o1, we have by < by

Stmilarly, we have 02 vaz = (02v32) AT = (02 va2) A (b1 v o1 va1) = (02 v 32) A (br v
o1))v((e2vaz)am) = 1v (0 vaz) Aay) = (03 vaz) na1. Therefore agvoy 3. And since
3250, V32, Wo have 33 <31

Since by v oy # 0 v 2y, we have by # a3 which means by < ~a.

Since by vo, vay = T, we have ~a; < by voy. Similarly ~b; < 0;vay. Since by voy & 02vaa,

Definition 3.33. Let D be o domain generated by a set of references R. A reference
r= (b.0,a) is said to be aligned with D if be Dy and a< Da.

Deflnition 3.22. A reference is b
the first it cannat be on or after the

Proposition 3.34. Let D e en experimental domain generated by a set of aligned strict
references R and let =Dy u~(D.). Then (D, ) is linearly ordered.

As for proparties, the quantity valuies are Just symbols used to labol the difforeat casos
st Q may correspand to the i . real numbers or s of wards ondered alphabetica
The units are tot captured by the numbers themselwe: they are captisred by the functy

Proof. Lan f: X = B be defined such that f(xy) = *r < 2,". As there Is one +
cnly ome statemeck % < 3, for each 7y ¢ X , ' a bljecton. Suppoms 1 € 73,
e T o T
et of oo copy 1 modinety fllowod by an elanet o ho b coy: Nroune, i o) <o) Onho b b i )« /)t s - oe2) -2 wh
. atemmen in 7 has a0 Smmediate succomor, there s b oaly o s tha eptes s 7 < 5, Thi tooans that / s an ondr bomorphi botween, (B, <) and (Y, <) ond is therefore o striet partial -3y # -by and therofora ~ay < by
two. If we call 1 le‘lluullh.lm-}.dxmmnnmmnmIl\dllxlmn '(krnw. Sumlul_v gt X ~A,!’vrhlbwdmrh that g(n) = “r > n" e Since by £ by, a2 <3y, by £ —a2 and —a; < by, the two references are aligned. o
of the systen 1 les than ¢ Ki® while s immodbato succomar s of theform “he s and only oo taicenent ¢ > 2" for cach 3y ¢ X. g 1 a ioction. Sappae 7, & 15 Proof. For irrefiexivity, stnce t

Proposition 3.23. Reference ond

o irveflemivity: not r< v
o tnsitivity: f 7y < 2 and 2

Proof. By 3.26 we have that B = Byu~(B,) is aligned by narrowness. By 3.15 the
ordering extends to I o

Having a set of aligned references is not necassarily enough to cover the whole space at all
lovels of precision. To do that. we need to make sure that, for example, between two references
that are not consecutive we can at least put a teforence in havween. Or that if we have two

e s

bt e . 10y Sy o

e o bt st e i) whether e s w N i S W 4 e 0 - W it N 1k SR bawor)z v xz( v oz v = (r1) v 9() wod thered and therefore by o =ova. Therol Proposition 3.28. Let 71 = (b1,01.a1) and 1 = (ba.02,22) be two strict references. Then references that overlap, we can break them apart imto finer ones that do not overlap and ane
Sooking b b bdore G Aher tha 1 we Tdoray shesed ;‘““:"]‘I WIS o st mteants o 5 Aot kv ot cpmsmce, ki e I DI eyl m‘)..;‘.]‘u;’( : 19-(‘]-;:“ Z5 ) ( ] irreflexive. mo<r if and only if -2y < by is aftor the other.
- #1) % o(xs). On (1) 5(e2) thee 2t (51,) 2 o) , 5
The muain revult bs that the above charactertzation of the hasis of the domain is Becewsary moans , € 1. This means that g i an order botwoen (B,.+) and (X, <) R ey B e e B e iy, el We call a set of references refinable if the domain they generate has the above mentioned

and sulficient 1o order the possibilities. 1f an exporimental domatn has o busks composed of To show that B 1s lnearly ordered, les 73,23 € X, If they both como o el B Bacanse the refarences are strict, -a; properties. This allows us to break up the whole domain imo a sequence of references that

oy are alrealy ordored by nasrowess. If pot. corsider the two staceme anl v e by et ' o do not. overlap, are linearly ordered. and that. cover the whole space. As we get o the finest

1eren” = %o As X s lnowly onderod, either (2 ¢ X[z <)< | e ) Teferencas, thelr beforo statements will b immediately followed by tho nogation of thalr after

e ot Definition 3.29. A reference is the immediate prodecessor of another if nothing ean be statements, since there can’t bo an between. Conceptually, this will give us the

£xm S Fn IV L) S sy St o 85 ok Jound before the second and after the firsi. Formally, 1 < r2 and a1 # ba. Two references second and the third condition of the domain ordering theorem 3.16.

» 3.15. Let By ond B, be tno sets of verifiable statements such that F are consecutive if one is the immediate successor of the other.
iy ordered by narrouness. Let Ty and D, be the experimental dome

= by vy and ~by = 0z v an. Therefore by v o, #0avas
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Definition 3.35. Let D be an experimental domain generated by o set of aligned references

Gabriele Carcassi

which returns elements of the original set and therefore educes to eountable conjunctions.
Therefore, when forming Dy the only new elements will be the countable disjunctions.

Consider two conntable sets B, B © By Their disjunctions b =\t band ba= v, b
Teprosent the narnowest statement that is broader than all elements of the respoctive sot.
Suppose that for each clement, of B, we can find a broader clement in By. Then by, being
roader than all elements of By, will be broader than all elements of By. But since by is
the narrowest clement that is broader than all clements in B, we have b > by. Conversaly,
suppose there is some element in B; for which there is no broader clement in By. Since
the mitial set is fully ordered, it means that that element of By is hroader than all the
elements in B,. This means that element is broader than b, and sinco by is broader than
all clements in By we have by = by. Therefore the domain Dy generated by B is linearly
ordered by narrowness.

that the countable disjunctions of elements of By are either narrower or hroades
countable conjunctions of the negations of elements of B,. Let By ¢ By and Az ¢
disjunction by =/ b reprasents Uhe narrowest statement thal i broader than al

of By while the conjunction ~az =~ V a= A -a represents the broadest statel

is narrower than all elements of ~(A;). Suppose that for one element of ~(4;
find a broader statement in By. Then by, being broader than all elements in &
roader than that one element in ~(4;). But since -a; is narrower than all cf
~(Az), we have ~a, < b;. Conversaly, suppose that for no element of ~(4;) we (
‘broader statement in 2. As B is linearly ordered, it means that all elements in

‘roader than all elements in By. This means that all elements in ~(45) are bro
by and therefore by < ~az. Therefore ) is linearly ordered by narrowness

Theorem 3.16 (Domain ordering theorem). An erperimental domain DX i
ordered i and only if it is the combination of two ezperimental domains Dx =
that:

(i) D =Dy ~(Da) is linearly ordered by narrouness

(i) o clements of D are prt o o air (s, ) such hat 5, Dy, 5. < D. ¢
it immediate successor of s, in D or s

(i) =€ has an smmedite sucesso, hen 3¢ By

Proof. Let Dy b a naturally ordered experimental domain. Let By and B, 1
as in 3.12 which means B = By u B, is the basis that generates the order topo
Dy be the domain generated by B, and D, be the domain generated by B, Tt
generated from D and D, by finite conjunction and eountable disjunetion and
Dx=DyxDs

Universi

To prove (i), we have that B, and B, ara lincarly ordered by 3.14. We ned to show that
the linear ordering holds across the sets. Let 21,72 ¢ X and consider the two statements
“zcm” and *r <" =-*r > 12", As X is linearly ordered, allhwr(xe)(\x(n)t(xi
X[z <z} or fre X|r<mjcze X\z <1}, Therefore either “r < 71" < “F < 72"
CrEERirere By ~(B,) is linearly ordered by < By 315 the st
D= Dyu~(D,) is also linearly ordered

To prove (i), let s & Ds. Take s, € T, such that ~s, s the narrowest statement in
~(D,) that is broader than s;. This exists bocause D, is elosed by infinite disjunction. As
52 55, let X be the set of possibilities compatible with s, but not compatible with s;.
The sat cannot have more than one eloment, or we could find an element 75 € Xy such that
< "2 7" <5 If X contains one possibility, then —s, is the immediate successor. If
X1 is empty then s, = -s,. Similarly, we can start with s, ¢ D, and find s, ¢ Dy such that s,
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of the immediate successors. Let ()" : By — B, be the function such that ~(6*") = -b* &
the immediate successor of b. Let b X — By be the function such that
On X define the ordering < such that 1 < 2 If and only If b(r1) < b(z2). Sinee (B, <)

b(z)A-b(z)**

(X.<). To show that the ordering s natural, suppose 71 < T2

50 15 (X,
then b(z1) < ~b(z1)"* ¥ b(r2) and therefore 7; < b(1n). We also have ~b(z1)"* % b(zs) <
~b(z2)"* and therefore 1, % b(z,)*. This means that given a possibility 71 € X, all and
anly the possibilities lower than 71 are compatible with b(r1) and therefore b(z) = *z <
=, while all and only the pessibilities greater than
therefore b(z,)** = “r > 7,”. The topology is the order topology and the domain has a

2, are compatiblo with b(z,)** and

o

23 References and experimental ordering
In the provious section wo have charactorized what a quantity is and how It relates to an
experimental domain. But as we saw in the first chapters, the possibilities of a domain are
ot objcts that exist a prlcrl' they aro defined based on what can bo verified experimentally.

an ordering to the possibilities of a domain does not answer the

‘more fundamental nmm how are quantities actually construeted? How do we, in practice,
F references thy

iy at a given level of precision?

What are the assumptions we make in that process?
In this scetion we construet ordering from the idea of a reforenca that physically defines
a boundary hetween a before and an after. In general, a reference has an extent and may
We define ordering in terms of references that are clearly before and
ers. We sco that the possibilities have a natural ordering only if they are generated
from a set of references that s refinable (we can always find finer ones that do not overlap)
fore on after are mutually exclusive cases. The possibilities, then, are the

‘We are by now so used of the ideas of real mumbers, negative numbers and the number zero
that it is difficult to realize that these are me?
Tecent in the history of humankind. Yet geometry itself started four thousand vears ago as
an experimentally discovered collection of rules concerning lengths, arcas and angles. That
is, human beings were moasuring quantities well bofore the real mimbars were invented. So,
ow does one construet instruments that measure values?

To measure position, we can use a ruler, which i a series of equally spaced marks. We
give alabel to each mark (e.g. a mumber) and note which two marks are closest to the target
‘position (e.g. between 1.2 and 1.3 cm). To measure weight, we can use a balan
equally prepared reference weights. The balance can clearly tell us whether one side is heavier
than the other, 50 we use it to compare the target with a mumber of reforence weights and
mote the two elosest (o.. between 300 and 400 grams). A clock
compare to (e, earth’s rotation on its axis, the ticks of a clock). We ean pour water from
a roference container into another as many times as are neoded
these cases what actually happens is similar: we have a reforence (e.z. a mark on a ruler,
a sot of equally prepared weights, a number of ticks of a clock)

that are, in the end, somewhat

0 and a set of

ives us a sories of ovents to

to measure its volume. In all

) and it is fairly casy to toll

el srmeraie and D Dyso(D). Then (D4, ), (Dor®) and (D, <) are imearsy

e (DX.) Wty e W e P Bty o

e becanse it s & subwet of B which is linearly ordored by Note
emction o s st of sasemsnta Rasnly oo by v il e
b nd e dufuncion of & Kike . of taimens ity orerd
e will roturn the t clerment. The countable disfunction, knstoad, can
w doments. But using thoss ey again will ot Introduce new ones:
fon of contable disjunctions will still be & countablo disjunction; tho finke
of countable disjunctions s the countable disjunction of fnite conjunctions,
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Note that determining whether the quantity is exactly equal to the reference is not as easy
the mark on the ruler has a width, the balance has friction, the tick of our clock will last a
finite amount of time. That i, the referenc itself can only be compared up to a finita level
of precision. This may be a problem when constructing the references themselves: how do we
Ko tha the marks o ou rules o ally spaced, o1 hat o welghis arocaally prepared,
or that tiek of our clock aro cqually thmod? It s a circular problem in the sense tha, in a
way, we need instruments of 0 bo sblo to erente
Yet, even If our teforencas ean't bo perfoetly compared and are not. wmly oqual, we can
still say whethar the valno is wall beforo or well aftor any of them.

To make matters worse, the object we are measuring may itsclf have an extent. 1f we
are measuring the position of a tiny ball, it may be clearly before or clearly after the nearest
mark, but it may also be partly before, partly on and parcly after. One may try to sidestep
the problem by measuring part of the object, say the pasition of the center of mass or of its
closest part. Bt this assumes we have a process to interact with only part of the object, and
that part can only be before, on or after the reference. 1t may be a reasonable assumption in
many casos but we have to be mindful that we made that assumption: our general dofinition
will have to be able to work in the less ideal casos.

In our general mathematical theory of experimental science, we can capture the above
diseussion with the following dofinitions. A reference is represented by a set of three state-
ments: they tell us whether the objeet is bafore, on or after a spocific reference. To make
sense, these have to satisfy the following minimal requiremenis. The before and the after
statemenis must be verifiable, as otherwise they would not be usable as references. As the
reference must be somewhere, the on statement cannot be a contradiction. If the object is
not before and not after the reference, then it must be on the reference. If the object is before
and after the reference, then it must also be on the reference. These requirements recognize
that, in general, a reference has an extent and so does the object being meas

e can compare the extent of two references and say that one is finer than the other if
the on statement. is narrower than the other, and the before and after statements are wider.
This corrasponds to & finer tick of a ruler or a finer pulse in our timing system. We say that
a eforence is strict if the hefore, on and after statements are incompatible. That is, the throe
eases are distinet and can’t ho true at the samo time.

Definition 3.17. A reference defines a before, an on and an ofter relationship betwcen
itself and another object. Formally a reference r= (b,a,a) is a tuple of three statements
such that:

1. we can verify whether the object 4s before or after the reference: b and 3 are verifiable
statements

2. the object ean be on the reference: 0 % |

3. if it’s mot before or ofter, it's on the reference: ~bA-a <o

4. if it’s before and afier, it’s also on the reference:

A beginning reference hos nothing before it. Thot is, b= 1. An ending reference hos
nothing ofter it. That s, A terminal reference is either bepinning or ending.

Proposition 3.30. Let n = (by,01,31) end ry = (bz.02,32) be two neferemces. If my is
immediately before 1 then b = -a1.

Proof. Let v, be immediately before ra. Then a; # by which means b, < ~a. By 3.27
wo also have -ay < by. Thereforo by = ~a =]
Proposition 3.31. Let 1y = (by,01,3) and 1y = (b, 0,22) be two strict references. Then
m s immediately before 1 if and only if by = -a,

Proof. Let ¥y be immediately before ra. Then by = -a) by 3.30. Conversely, let by = ~a1.
Then 1y < r3 by 3.25. We also have a; # ~ay, therefore ay # bz and ry is immediately befora
1 by definition o

(b.~b A ~a,32) for some b e D such that ry < r; and therefore

For the third, suppase a1 € Dy and by € Dy such that ~a1 < b, Then 11 = (1,-a1.21)
and rz = (b2, bz, 1) are strict refercnces aligned with the domain such that rs < 72 but ra
s not an immediate suceessor of ry. This means we can find s = (b, -b.A ~a,a) such that
Iy <P <1y and therefore -a, < b< ~a < by o

Proposition 3.37. Let D be an experimental domain genernted by o set of refinable aligned
strict_ references. Then all elements of I) ere part of a poir (sp,s,) such that sy € Dy,
So e D, and s, is the immediate successor of s, i D ar s, = -s,. Moreaver if se D has
an immediate suceessor, then s < Dy.

Proof. Let D be an expermental domain generated by a set of refinable aligned strict
Toforences. Lot s, € Dy. Lot A= {3 € D[avs; 21} Lot 5,= V a. First wo show that
ety TSR = =mn [ 92 Ao Enilaed i
avsy# T, -a 5 which moans sy <"a bocauso of tho total ordor of D. ‘This moans that
sea-a= 5 for all ac A, therefore A 5a = 55 and 5 % e

Next we show that no statement s ¢ D s such that s, <5 < -sa. Lat a ¢ Da such that
5, < ~a. By construction a ¢ A and tharoforo -5, % -a. Theroforo wo can’t havo s <a < ~s,
Wa also can’t have b e Dy such that s5 < b < -s,: by 3.36 we'd find a ¢ D, such that
si<a % b < s, which was ruled out. So there are two cases. Eithor s, % -5, then s, < -
s, is the immediate successor of b. Or

‘The smo essonta can be appled saring rom s, D 1o fnd a5 < D such chat 11
the Immediate predecessor of -s, or an equivalent statament. This shows that all cloments
of D) are paired

To show that f a statement. in I has a successor then 1t must be a before statement,
Tet 53,5 € D such that s, is the Immediate successor of s;. By 3.36, In all cases where
5, ¢ Dy and 53 ¢ D, we can always find another statement between the two. Then we must
have that 5, € Dy and 5, € Do [a}

Theorem 3.38 (Reference ordering theorem). An expermental domain is naturaily or-
dered if and only if it can be generated by a set of refinable aligned strict references.

Proof. Suppose Dx is an experimental domain generated by a set of refinable aligned
strict references. Then by 3.34 and 3.37 the domain satisfies the requirement, of theorem
3.16 and therefore is naturally ordered

Now suppose Dy is naturally ordered. Define the set 5y, B, and D as in 3.12. Let
R={(b,~bA-a,3) |be By,ac B, b<-a) be the set of all references constructed from the
‘basis. First lot us verify they are reforences. The before and after staiements are verifiabla
since they are part of the basis. The on statemeni, ~b & ~a is ot a contradiction since
b < ~ameans b+aand bz -a. The on statement is broader than ~b A -a as they are
equivalent and it is broader than baa as that is a contradiction since b < ~a. Therefore &
i & set of reforences. Since the before and after statements of R coineide with the basis of
the domain, Dy is gencrated by R

34

R. The set of references is refinable if, given two strict references ry = (by,01,31) and
1y = (b,00,20) aligned with D, we can alunys:

« find an intermediate one if they are not consecutive; that i, 1f 1y < ¥y but ry is not
the immediate successor of 7y, then we con find a strict reference 7y alignal with D
such that 1y < Ty <1y,

o refine overlapping references if one is finer than the other; that is, if o3 < oy, we can
Jind e strict reference v aligned with D such thai o3 < o) and ither by = by end
Tary orag=a and v a .

Pmnusmun 3. 86 Let D be an experimental domain generated by a set of refinable aligned

Now we show that (Ds.?) is linearly ordered. The basis B, is linearly orderod by e TR o (o D e T et relerenes
e e et o e et et e At compatible with —s, but not compatible with s;. If X; contains one possibility, then s,
Note that broadness s the opposite order of narrowmess and therefore a st linearly ordered SEmE e G (e
y one is linearly ordered by the other. Therefore B, is also linearly ordered by narrowness “To prove (iii), lev. 51,52 € I such that s, is the |mmd.m:e successor of 5. This means
a0d 038 D, by the previous angumant. Therafore D, 1s ordared by broadness. we can write $2 =51V 1 for some z1 & X. This means $12 %7 <227 while 522 “r < 17 and
“To show that D= Dyu ~(D,) is linearly ordered by narrowness, we only need to show “’“"“"‘ s <y, % CHAPTER 3. PROPERTIES AND QUANTITIES 3.4. DISCRETE QUANTITIES bl

Now we show that R consists of aligned strict references. We already saw that b # 2
and we also have ~b A —a Is incompatible with both b and a. The reforences are strict.
To show they ate aligned, take two references. The before and not after statements are
linearly ordered by 3.14 which means the references are aligned.

To show R is refinable, note that each reference can be expressed as (“z < 7", “ry <
z<r" “r>2,") where 2,22 ¢ X and “my <2<’ = “e2 2" Az < 27, That is,
every reference is identified by two possibilities T, 1, such that 7, < r;. Therefore take
10 Teforences ry.rz € R and let (21,72) and (25, 74) be the respective pair of possibilities
we can use to express the references as we have shown. Suppose r, < r; but they are not
consecutive. Then * € ;" < *r < ry”. That is, we can find 5 € X such that 5 < 25 < 15
which means “r < 2" £ “r < 74" and “r < 75" £ “r < 24", Therefore the reference ry¢ R
sdentifiod by (x5, 75) 1 botween the two reforences. On the other hand, assume the second
reference is finer than the first. Then x, < r3 and x4 < ry with either 1) # T3 or 14 % 15
Consider the references ry,ry ¢ R identified by (21,7:) and (72,72). Bither rs < 13 o1
rp <1y Also note that the beforo statements of ry and r5 are the same and the after
statements of ry and ry are the same. Therefore we satisfy all the requirements and the
set R is refinable by definition. o

To recap, experimentally we construct ordering by placing references and being able to
tell whether the cbject measured is hefore or after. Wo can define a linear order on the
‘possibilities, and therefore a quantity, only when the set of references meets special conditions.
The references must be strict, meaning that before, on and after are mutually exclusive,
They must be aligned, meaning that the before and not-afier siatement must be ordered by
narrowness. They must he refinable, meaning when they overlap we can always find finer
reforences with well defined hafore /after relationships. 1f all these conditions apply, we have
a linear order. If any of these conditions fail, a linear order cannot. be defined.

The possibilities, then, correspond to the finest references we can construct within the
domain. That is, given a value gy, we have the possibility “the value of the property is go”
and we have the reference ( “the value of the property is less than go”, “the velue of the property
s go”, “the value of the property is more thon go”)

Discrete quantities

Now that we have scen the general conditions to have a naturally ordered experimental do-
main, we study common types of quantities and under what conditions they arise. We start
with discrete ones: the mumber of chromosomes for a species, the number of inhabitants of a
country or the atomic number for an eloment. are all diserote quantities. These are quantities
that are fully characterized by integers (positive or negative).
We will see that d have a simple
there can only be a finite number of other references.
“The first thing we want to o is eharacterize the ordering of the integers. That is, we want
1o find necessary and sufficient conditions for an ordered set. of elements to be somorphic to
a subset of megers. First we note that beuween any two integers there are always finttely
many eloments. Let’s call sparse an ordered set that has that property: that betwoen two
clements there are only finitely many. This is enough to say that the erder is isomorphic to

o

‘between two references




Reference ordering theorem

To define an ordered sequence (e.g. of “instants”), the references must be (nec/suff conditions):
» Strict —an event is strictly before/on/after the reference (doesn’t extend over the tick)

* Aligned — shared notion of before and after (logical relationship between statements)
 Refinable — overlaps can always be resolved

Additionally:

Between any two references we can always have another reference = real numbers

Only finitely many references between any two references = integers

For time/space, these conditions are idealizations

https://assumptionsofphysics.org/
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How does this model break down?

The ticks of a clock have an extent and so do the events (references not strict)
If clocks have jitter, they cannot achieve perfect synchronization (references not aligned)

We cannot make clock ticks as narrow as we want (references not refinable)

No consistent ordering: no “objective” “before” and “after”

In relativity, different observers measure time differently, but the order is the same. We
should expect this to fail at “small” scales.

A better understanding of space-time means
creating a more realistic formal model that
accounts for those failures

https://assumptionsofphysics.org/
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What type of models should we use?  Hardtosay, butwe
— can argue from

necessity

(N.B. this is a toy

(N8, this s 2 to » Lack of order at small scales,

) point

should have f order at large enough scale
y many

neighbors) o

. What we can distinguish

J experimentally (i.e. topology) seems
! to be linked to how precisely we want

to distinguish (i.e. geometry)

Current mathematical tools have a hard
division between topology and geometry

Likely need new math

R
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Our reasoning contradicts the expectations of many that time is
simply “discrete” at the smallest scale

This intuition is based on the idea that the continuum is like the
discrete but “with more points”

This idea (though extremely common
in physics) is flawed

R
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Topology of the reals Connected: cannot be divided
Open set —open interval into two disjoint open sets

Always space between two references
AN A that .do not overlap: it’s what makes it a
J U JU UL continuum

N

/
SR
/
SR

Reference

No contingent decidable statements

. Disconnected: can be divided into
TOpOIOgy of the mtegers two disjoint open sets

Reference

/

@ .J.[. @ @ .J.[. @ OJOD.[. e @ @ @ @ e e @

No space between two consecutive references

R

All contingent statements are decidable
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Takeaway

* Ordering, the defining features of quantities, is a logical structure
« 3 < 5 precisely because “there are less than 3 items” < “there are less than 5 items”

* TODOs:

* Find whether one can construct topological spaces that are not locally metrizable but are
“sort of metrizable” on long “distances”

https://assumptionsofphysics.org/
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Space of the well-posed scientific theories

Physical theories

Specializations of the general
theory under the different
assumptions

Hamiltonian Unitary

. Quantum
Classical mechanics SUEILT0

state-space
phase-space

A
/ I

States and processes General theory

Information granularity

Basic requirements and
definitions valid in all theories

5

Experimental verifiability
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Information granularity

Logical relationships < Topology/o-algebra Granularity relationships < Geometry/Probability/Information
*  “The position of the object is between 0 and 1 meters” *  “The position of the object is between 0 and 1 meters”

< “The position of the object is between 0 and 1 kilometers” < “The position of the object is between 2 and 3 kilometers”
* “The fair die landed on 1” < “The fair die landed on 1 or 2” *  “The fair die landed on 1” < “The fair die landed on 3 or 4”
e “The first bit is 0 and the second bit is 1” < “The first bit is 0” *  “The first bit is 0 and the second bit is 1” < “The third bit is 0”

= Measure theory, geometry, probability theory, information theory,
... all quantify the level of granularity of different statements

A partially ordered set allows us to P, p_E ‘e s Uy 2_) - R
. . e Once a “unit” is chosen, a measure
compare size at different level of infinity .B . )
and to keep track of incommensurable * quantifies the granula.\rlty of
quantities (i.e. physical dimensions) . C g another statement with respect to
c<D A the unit
A<B<C<E = (W) = 1
D_$_C SlgSZ iuu(sl) < Hu(SZ)

Uy (51 V s3) = py(s1) + py(sy) if s; and s, are incompatible
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Takeaway

* Only rough ideas at this point
* TODOs:

* Find “right” basic axioms by reverse engineering measure theory

R
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Wrapping it up

* We have a good foundational layer done that recovers topological structures
from requiring experimental verifiability

* Though some elements can still be developed and better understood

* The layer to describe more quantitative elements (geometry, probability, ...) is
still to be understood
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