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Introduction

* Together with Prof. Christine Aidala, | lead a project
called Assumptions of Physics -
https://assumptionsofphysics.org — that aims to find
a minimal set of starting points from which the laws
can be rederived

* It consists of two main efforts:

* Reverse physics — starts from the laws and finds physical
assumptions that provide equivalent formulations

* Physical mathematics — starts from physical ideas, carefully
encodes them in formal definitions, rederives the familiar
mathematical structures
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The mathematical structure of time (i.e. real numbers
with the standard topology) can be understood as
coming from an idealized operational model of clocks

As time resolution increases, this model must fail and
needs to be replaced with a more realistic account
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Outline

* What is time?

* What it means to define something; the role of operational definitions in science; the
topological structure imposed by experimental verification; the role of clock
synchronization in defining time

* A metrological model of time

* The metrological and logical structure of clocks; the necessary and sufficient conditions

for continuous time (i.e. real numbers).
* Inevitable failure of time ordering

* The untenability of the conditions for continuous time; how time ordering itself must
break down.
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What is time?
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Hard question because time is elusive

What is time?

Then defining anything else should be easy!
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noun

1. An article of furniture supported by one or more vertical legs and having a flat horizontal
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Hard question because “what is” is elusive

What is time?



Before giving a definition, we need to say:

What is the purpose of the definition?

What are the “primitive elements” that are allowed to
be in the definition?
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Because that’s what all well-defined math objects are!

\
In math, we want a formal definition: some set with some properties

E.g. a variable that can be used as a parameter for the evolution
| really don’t know: | still haven’t figured out what philosophers consider well-defined

In philosophy, we may look for an “ontological definition”: some
intrinsic feature of reality

E.g. A nonspatial continuum in which events occur

These types of answers do not help us in a lab
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In a lab, an operational definition
is necessary and sufficient

operational: it tells me what to do This is what physicists consider well-defined!

~
Time is what is measured by a clock

What is a clock?

W’ TE'STIme:
AN

not operational: it does not tell me what to do
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What is a clock?

The seasons

The heart (pulse)
A bucket of water with a hole

You can get a set of instructions on how

to build these: they have operational
definitions

But these are just examples of clocks!!!
A pendulum
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What is a clock?

A clock is anything that can be synchronized to other clocks

\

Clock synchronization is operationally defined

The idea of time comes out of our ability to synchronize our clocks; examples
serve to “jumpstart” the process
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We solved the “purpose” question (i.e. operational definition)
We need to answer the “primitive elements” question

Verifiable statements: assertions that can be experimentally verified in a finite
time .

The mass of the photon is less than 10713 eV — Verifiable UNDEFINED
The mass of the photon is exactly 0 eV = Not verifiable due to infinite precision,

FAILURE (in finite time)
but falsifiable

The syntax/semantics/structure of these statements cannot be formally specified further

For example, whether a specific statement is experimentally verifiable or even well-defined
may depend on context (e.g. premises, idealization, theory, etc...)

The mass of the electron is 511 + 0.5 KeV
e o

When measuring the mass, it is a verifiable hypothesis When performing particle identification, it is assumed to be true
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Experimentally

Close under NOT and iy\,/\ \ distinguishable cases
countable AND/OR (countab Theoretical statements

complete Boolean algebra),
statements formally associated
with an experimental test

Precise map
between physical
concepts and their

Verifiable
statements

. Possibilities
/

Closed under finite AND and .
countable OR (Heyting algebra), K e \ / mathematical
generated by a countable set I represe ntation

g-algebra —  Borel sets

All proofs can be
Open sets “translated” into
Tooolo — physically meaningful
POIREY - / language
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A physical theory is fully specified by a countable set of
verifiable statements and their logical relationships

All mathematical objects we use in physics (symplectic
manifolds, tensors, Hilbert spaces, Lie groups, ...) are ultimately
identifying statements and their relationships
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A metrological model of time
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How do we formally model a clock?

A reference (i.e. a tick of a clock) is something that allows us to distinguish between a before

and an after . o .
Mathematically, it is a triple (b, 0, a) such that:

b and a are verifiable

* The reference has an extent (0 Z 1)

D * If it’s not before or after, itis on (b A =a < 0)
e Ifit's before and after, itison (b A a < o)

Coetore | On | afer

before after

v

&
<

T F F
F T F
F F T
T T F
A clock is a collection of references : I I
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Imagine collecting the references of all possible clocks
into a single logical structure. What are the necessary
and sufficient conditions such that they identify a point
on the real line?

Intuitively, we would need clocks at higher and higher
resolutions, all perfectly synchronized, ...
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1. Strict references

A reference is strict if before/on/after are mutually exclusive

T F F 0
F T
F F T O

Physically, this means assuming that the extent of what we measure
is smaller than the extent of our reference
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Multiple references

Without further constraints, references

before after

A

would not lead to a linear order

I Lo e g
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Multiple references

Note: the “boundaries” are ordered

The fact that a reference is “before” or // \\
“after” another is captured by the

; . . . b, a;
statements’ logical relationship < 02 :
b0 @
vooox X
voox X

But order relationship between references is too restrictive
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2. Aligned references

Two references are aligned if the before and not-after
statement can be ordered by narrowness/implication

For example, b; < b, < —aq < 1a, b,

A

< Means that if the first statement is true
then the second statement will be true as well
That is, the first statement is narrower, more specific

A

% Ass;}@gité(;ns Gabriele Carcassi - Physics Department - University of Michigan

v

v

23



Filling the whole region

If two different references overlap, we can’t

say one is before the other: we can’t fully Y o .
resolve the linear order
. b1 01 aq .

Conversely, if two references don’t overlap and
there can be something in between, we must be
able to put a reference there

b1 01 aq
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3. Refinable references

A set of references is refinable if we can address the

previous two problems and resolve the full space

b2 a2

v

If two references overlap, we can find a references that
refines the overlap

b,

v

If something can be found between two references, then
there must be another reference in between

< by a,

»
»
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o CHAPTER 3. PROPERTIES AND QUANTITIES

Ve pombtin bmumshvs com b osdre s how (4 ol I e snd, i sbrnl
charactatizod by statiment narrowness: 10 i less bocauso “the quentity is less then
10° i arrowerthan ke puanty te e tha 42

As the defining characteristic for a quantity i th ability o compare its values, then the
valises et be ordered 1n some fashion from smaller to grostor. Therefore, ghven two difforent
e, one st be befors the other. Mathematically, we call inear order an order with such
a chiarncteristic s wo can Imagine the clements positionod along a line. Noto that woctors
aro pot linearly ordored: bo direetson is grester than the otber. Therefore, in this context, a
veetor will noc strictly be a quantity but a collection of quantition?

Wo also have 10 define how this order can be experimentally vertiod. The Mlen is thas we
should, at Jewst, be ab 10 vertfy that the value of a given quantity i before or after a et
valie. This allows s to construct boands such as “he mass of the electrom s 511205 ke V™
which wo take 10 be equivalens 1o “the mass of the lectron i more than 510.5 keV but leas
thm 511.5 ke V" For fatogers, this alsa allows ws to yorify particular mumbers as “the earth
has one natural satellite” s equivalent o the “the oarth has more thon sero naturel sotelltes
and fewer thon two”. Thereforo we will define the order topology as the onn genarated by sts
af the type (a,ce) and (-o0.b).

A quantity, then, s n ondered propercy with the ordst topology.

Definition 3.4. A linear order o & set Q @ a riationshep <: Qx Q = B such tha
1. (antisyrametry) 4 o < 9s end g <@y then g =
2 (trunsitioity) §f @ < @ and @ < @ then @1 < 3
3. (total) ot loast ¢ < @2 or G2

A st togethar with a linenr ovder ts cnlled & linearly ordered set

Deftnition 3.5. Let (Q.<) be o linearly ordernd set. The order topology is the topol
oenerated by the collections of sets of the form:

(@.0)= {ge Qla<al. (-00.8)= (q¢ Qla<b)
Definition 3.6. A quantity for an experimental domain Dy is a linearly ordered prope;
Formally, i o tuple (Q.<.q) where (Q.q) & o property, <:Qx Q + B i o linear or
and Q is a topological space with the onder tapology with respect fo <

As for propertses, the quantity values are Just symbols used o label the differeat cases.

et Q may correspand to the integers, real alphabatics
The units are bt capured by the numbers themselves: they are captured by the funct)

Tin other " (g, g
Grteme, nmﬂmﬂ\mnm o (L AN, Menge, QU B 1hn st mvmting f 9w
that i capture Mo

*The wosence * coub st

W will b reating ey of statitien satecietn i i Uhe bk, bt mafiew 4 o may that Shey o

e detand bece statetests Uhat sy bounds
e o e et Uit it

ooking i s bedore o afer the one we randomly e
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which returns elements of the original set and therefore reduces to countable conjunctions.
Therefore, when forming Dy the only new elements will be the countable disfunctions.

Consider two conntable sets B, s © By Their disjunctions b =y band ba= v, b
Teprosent the narnowest statement that is broader than all elements of the respactiva sat.
Suppose that for each element of By we can find a broader clement in By. Then by, being
‘roader than all elements of By, will be broader than all elements of By. But since by is
the narrowest cloment that is broader than all clements in B;, we have b > b, Convarsaly,
suppose there is some lement. in B, for which there i no broader cloment in By. Since
the mitial set is fully ordered, it means that that element of By is broader than all the
elements in B,. This means that element is broarer than b, and since b, is broader than
all elements in By we have by » by, Therefore the domain Dy generated by By is linearly
ordered by narrowness.

Now we show that (D.,) is linearly ordered. The basis B, is linearly ordered w
roadness because the negation of its elements are part of B and are ordered by n
Nota that broadnes s the appentts orderof arrowmess and thorefore ot Inearl orderel
"y one is Linearly ordered by the other. Therefore B, is also linearly ordered by narrowness
and 0 1 D, by the previous arqument. Therefore D, is ordered by broadness.

To show that &= Dy ~(Da) Is lincarly ordered by narrowness, we only need to show
that the countablo disjunctions of elements of B are either narrower or broades
countable conjunctions of the negations of clements of B,. Let B, By and A; |

disjumction by = /b represents the narrowest statement. that s broader than all
of By while the conjunetion 3z = =

\ -a reprasonts the broadest state,

i marrowor than al clomonts of ~(As]. Suppeso that for ono clemont of (4|
find a broader statement in B;. Then by, being broader than all elements in £
‘Droader than that one element in ~(4;). But since ~a, Is narrower than all el
~(A2), we have ~a % b;. Conversely, suppose that. for no element of —(4z) we |
‘Droader stavement in By. As B is linearly ordered, it means tha all elements in
‘roader than all elements in By This means that all eloments in ~(45) are bro
by and therefore by < ~a. Therefore 1 is linearly ordered by narrowness.

Theorem 8.16 (Domain ordering theorem). An erperimental domain DX i
ordered i and only if it is the combination of two ezperimental domains Dx =
that:

(i) D = Dyu~(D) is linearly ordered by norroumess
(4 ol lements of D re ort of o o (8,) such that 5. Dy, 5. € 2. ¢

() 22D i e Emomeia: s, e e By

Proof. Let Dx be a naturally ordered experimental domain, Let By and B, |
as in 3.12 which means B = B, u B, is the basis that generates the order topc
Dy be the domain gencrated by By and D, be the domain gencrated by B,. Tl
generated from Dy and D, by finite conjunction and countable disjunction and
Dx=DyxD,
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immedite successor of s, in D or §= -5, 3.
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tha allows us o map statoments to numbers and vies versa.

As o want
that are fully charactertaed by & quastity. For example, the doman for the mass of & syetem
han or oqual to zo0. Fach posibility

nit, say 10 Kg. As the values of the mass are ordered, we can aleo say that the passibiitis
thomsetves aro orderod. ‘That &, *the mass of the sysiem is 1 Ko® procedes *the mass of the
sywtem 6 2 Ko’ This ordertog of the possibilites will bo Iinked o the natural topology &=
“the mass of the system i less than 2 Ky”, the disjuction of all possihlltes that come befors
a particular pasibility, s 2 verifishle staterent

Wo call & natural order for the posshility & Bnear order on them sach tha the order
topology s the natural topology. An experimental domatn s fully chatacterised by a quatity
1€ and only I 1t s naurally ordered and that quanticy is ordered n the samo way; It s order
imumorphi. In other words, wo can oaly aebgn a quantity to an experimental domain f i
alroady has a nasusal ondering of the same type.
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systesn ds more then @, Kg® 1s also ordend by narrowness but with the reverse
ordertog of the pustilios abua. Thaooare th wey tatesats whooe vrtabl scs deine
the anor topology an therstoro fotntly comstitit a bass for the experimental domain
corsider tho statemets 5, = *the mass of the system is lese then or equal 1o 1 Ko*

w0 = the e of the i s e hen 1 K, Vo v 204 . I fct, I wo eplac
bo valoe i 53 with anything bess than 1 Kg wo'll still hawe 55 < 51, Tnstaad if wo use a valoe
groater than | Kg wo'd have 3, €. In otber words, if we call B the set that inclides both
the loss-thanor-oqual and Joss-than statements this s also lnearly ordered by narownes.
But. “the mass of the system is less than or agual fo 1 Ko” is equivalent 10 ~ The mas of the
wstern is greater than 1 Kg". In other words, B = By U ~(B, ) contals all the statements ke
“the mass of the system is less than @y Kg” and - The mass of the system fs more than g
Ko and these aro all linoasly ordsred by narrowness.

The ordering of B can be further characteetand. Note that 5, = he mass of the aystem
s less than or eyual @ 1 Kg” is the immediate sucomwor of 3, = *the mass of the system i
less than 2 Ko". That is, they aro difforent and there can't be any otber statoment in 5 that
15 beonder than s, but marrower than §; since they diffor for s singhs case, This will happen
for any mass value. So H is composed of two exact copies of the ordering of X, where cach
elenent of one copy 1s lmmediately followed by an element of tho other copy. Mareovor, If &
statement. 13 has an immediate sucomwor, there must bo only 0oe ca thik soparates the
e 2l g Uk e vt St M skt i b e M 4 s
of the system (s lews thon gy Ko® while hs immediate succossor s of the form “the me
the st s s hex o vl 10 1 Ky tho s i bromder by ot (e oty
asociatod with g;. Thorofore statements in 1 that have an b
By e well.

“The matn rewclt s that the above charactertzation of the hasis of the domain is pecwssary
and suficlent 10 order the possibilicies. 1f an experimental domali has a basks composed of
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To prove (i), we have that B, and B, are linearly ordered by 3.14. We need to show that.
the lincar ordering holds across the sets. Let 1,72 ¢ X and consider the two statements
“z <z’ and *r <137 =*r> 12", As X is linearly ordered, either (r € X |z <11} E(:re
X |z €22} or {2 ¢ X[z £ 72] € 3¢ X |z < 21}, Thoraiors either = < 12" ¢ o £ 72 o
¥z ¢y < < xy”. Which means B = B, u~(B,) is linearly ordered by <. Ey3 15 thest
D=Dyu~(Da) is also linearly ordered

To prove (i), let s, € Dy, Take s, € D, such that s, is the narrowest statement in
~(D,) that is broader than s;. This exists because D is clased by infinite disjunction. As
a5, let X1 be the set of possibillties compatible with -5, but not compatible with s.
The set cannot have moro than one elament, or we could find an element 7, € X; such that
< "PS e <5 If X; contains one possibility, then s, is the immediate successor. 1f
X1 15 empty then s, = ~s,. Similarly, we can start with s, ¢ Dy and find s, e D such that s,
s the broadest statement in D, that is narrower than ~s,.. Lot X be the set of possibilities
compatible with s, but not compatible with s;. If X, contains one possibility, then s,
s the immediate successor and if X, is empty then s

To prove (i), let 51,55 € D such that s, is the mimediai stcccsso of 5. This ocans
we can write §; =5, v, for some 23 & X. This means 53 = “z < 2,° while s = 2 <" and
therefore s1 < By
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of the i Let (-y"* : By — B, ba the function such that ~(b™) = 6" s
the Immediate successor of b. Lev b : X —+ By be the function such that z = -b(z) A-b(z)**.
On X define the ordering < such that 71 < 72 if and only 1f b(z) € b(z2). Since (B <)
15 Imearly ordered 50 1s (X.<). To show that the ordering Is natural, suppose 11 < r2
then b(z:) < ~b(z1)"* = b(z2) and therefore 2, % b(zz). We also have -b(x1)"" = b(rz) <
~b(zz)" and therefore z» < b(z;)". This means that given a passibility =y e X, all and
only the possibilities lower than 7y are compatible with b(x;) and therefore b(z;) = “r <
2,7, whilo all and only the possibilitios groater than 2, aro compatible with b(z,)* and
thereforo b(z;)** = *2 > 2,”. The topology s the order topology and the domain has a
natural ordoring o

References and experimental ordering

In the previous section we have characterized what a quantity is and how it relates to an
experimental domain. But as wo saw in the first chapters, the possibilities of a domain are
not objects that exist a priori: they are defined based on what ean be verified experimentally.
Thereforo simply mlgmng an ordering to the pmmlm cf a domain does not answer the
ructed? How do we, in practice,
create a system of et allws e to e q\.m.w at a given level of precision?
What are the assumptions we make in that process?

In this section we construct ordering from the idea of a reference that physically defines
a houndary betwoen a before and an fter. In general, a reforence has an extent and may
overlap with others. W define ordering in terms of references that. are clearly before and

chers. We sco that the possibilities have a natural ordering only if they are gonerated
from a set of references that is refinablo (we ean always find finer ones that do not overlap)
and for which before/on,/after are mutually exclusive casos. The possibilitics, then, are the
finest reforences possible.

We are by now so used of the ideas of real numbers, negative numbers and the namber zero
that it is difficult to realize that these are mer that are, in the end, somewhat
recent in the history of humankind. Yet geometry itself started four thousand years ago as
an experimentally discovered collection of rules concerning lengths, areas and angles. That
5, human beings were measuring quantities well before the real mumbers were invented. So,
how does one construct instruments that measure values?

To measure position, we can use a ruler, which is a series of equally spaced marks. We
&ive a label to each mark (o.g. a mumber) and note which two marks are closest to the target
position (e.g. bevween 1.2 and 1.3 em). To measure weight, we can use a balance and a set of
equally prepared reference weights. The balance can clearly tell us whether one side is heavier
than the other, so we use it to compare the target with a number of reference weights and
note the two closest (e.£. between 300 and 400 grams). A clock gives us a series of events to
compare to (e.g. earth's rotation on its axis, the ticks of a clock). We can pour water from
a Toference container into another as many times as are needod to measure its vohume. Tn all
these cases what actually happens is similar: we have a reforence (e.g. a mark on a ruler,
a sot. of equally propared weights, a number of ticks of a clock) and it s fairly easy 1o tell

remtatrzn®zVriy

erpormmental domatn and X s possid

DRSS 511 O o Mewsl it
A . Bue (> 21" [11e X) and 8= Byu~(Ba).

tiss. Define <n’|meX

Dofahicn 313, L (Q.¢) be o rleml it Lo 1.6 0. The g & an enmadh
successor of g, and 4y i w immediate predecessor of ¢, i there s no clement o
e sl olymyapiarpaisle e
Tww elements are consecutie if one is the immediate successor of the

Proposition 3.14. Let D be o nasumily ondervd erpersimental dowain. Then (B,
) end (1,<) are linearly orderwd sets. Mareover (B <), (B, ¥) are onder isomarp
<)

Proof, 14t £+ X = B bo dofined such that f(x;) = “ < 7%, As them s 010 4
oaly one statemat 'z < 5, for each 3, ¢ X / i a bijction. Suppose 7, < 73,
b s v x( v ooy s s snd et
Sxr) < I(r:) On the other \uwilll(nl:/(nl then a8 sees (00,21) & (<00, 23) wh
meRns 7 “This means that § & an order isomorphism between (B, <) and (X, <)

oty ot 91X = B, bo dofinod sch that g(z;) = “r > r,". As thera fs (
and only one statement *r > 2," for each x; ¢ X, ¢ Is a bijection. Suppose 2, < 1y,
h-wm.)-l B Mol VO LS AR = 8(71) v 9(7z) and thered
o(r3) » o(xs). On the otber hand u'gumg«m then s st (11, 20) 2 (73,00) wh
tonss 2, < 2. ‘This moans that ¢ s an botwoen (8,.3) and (X, <)

To show that 5 1s hiearly ordorod, otz aneX Hibey both come from eithar By
they are alroady ordorod by narrowness corsider tho two stateme
Ioren"=-*r>a AsX hllnunvunh«!.l dithar (z¢X|z<n)c(

w (zeXir<n) ¢ (reXir<n). Thoboro other 7 <x,” < 7 < 57

< n®, Which tnesm B2 &u‘{ﬂ-]hhmdvmllv[

B 315, Let B and Bu ke two sets of serifabe saiements mch tha |
ordered by narrowness. Let T ond D, be the experimental doma

i senraie o D - Ds-(Dy. Them (Dur<), (Do) e (0, ) ae bmarsy

= ‘m\ho‘ that (D, <) is Bnearly ordered. Wo. hm that B. 1 linearly mlmd
it bs & subset of B by narrowne.
ot of & i s of st Rty mdnnd by sarrownese will return
& clement and the disjunction of  finite wx of statemeets Iinearly ordered
s will roturn the . clemant. The countable disjunction, instoad, can
i cloments. But using thoss ekemcnts again will not Introduce new ones:
fon of countable disfunctions will still be & countable disjunction; w ﬁmm
2 ot disjunctions i the countable disjunction of fnito conjun
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Note that determining whether the quantity is exactly equal to the reference is not as easy
the mark on the ruler has a width, the balance has friction, the tick of our clock will last a
finite amount, of time. That is, the reference itself can only be compared up to a finite level
of precision. This may be a problam when constructing the references themselves: how do we
Ko tha the marks o1 ou rler atoally spaced, or hat the welghes axocaally propared,
or tha tieks of our clock aro cqually thmod? It s & circular problem in the sense that, in a
way, v need 0 bo sblo to erente
Yot aven If our refereneas can't bo perfoctly compared and are not mmly caqual, we ean
still say whether the value is well before or well after any of them.

To make matters worse, the objoet we are measuring may itself have an extent. If we
are measuring the position of a tiny ball, it may be clearly before or clearly after the nearest
mark, but it may also be partly before, partly on and partly after. One may try to sidestep
the problem by measuring part of the object, say the position of the center of mass or of its
closest, part. But this assumes we have a process to interact with only part of the object, and
that part can only be before, on or after the reference. It may be a reasonable assumption in
many eases but we have to be mindful that we made that assumption: our general definition
will have to be able to work in the less ideal cases.

In our general mathematical theory of exparimental scionce, wo can capture the above
discussion with the following definitions. A reference is represented by a set of throe state-
ments: they tell us whether the objeet is bofore, on or after a spocific reference. To make
sense, these have to satisfy the following minimal requirements. The before and the after
statoments must.be verifiable, as otherwise they would not be usabl as references. As the
reference must be somewhere, the on statement cannot be a contradietion. If the object is
not before and not after the reference, then it must be on the reference. If the object is before
and after the reference, then it must also be on the reference. These requirements recognize
that, in general, a reference has an extent and so does the object being meas

e can compare the extent of two references and say that one s finer than the other if
the on statement, is narrower than the other, and the before and after statements are wider
This corresponds to a finer tick of a ruler or a finer pulse in our timing system. We say that
& reference is strict if the before, on and after statements are incompatible. That is, the three
cases are distinct and can't bo true at the samo time.

Definition 3.17. A referenee defines a before, an on and an after velationship betueen
itself and another object. Formally  reference = (b,0,3) i a tuple of three statements
such that:

1. we can versfy whether the object is before or after the reference: b anda are verifiable
statements

the object can be on the reference: 0% 1|

if #t’s not before or after, it’s on the reference: -bA-a <o

4 if it's before and after, it's also on the reference:

A beginning reference hos nothing before it. Thet is, b= 1. An ending reference hos
nothing fter it. That is, A terminal reference is euther beinning ot ending.

we

ifbizby, 01502 and a1z a2

is ot strict.

e ver

“To measure a quantity we will have many references one after the other: a ruler will have
many marks, a seale will have many reference weights,
after another in terms of the before/on /afier statemenis?

1f reference v, is before reforence r; we expect that if the vale measured is before the
first it will also bo beforo the second, and
Note that this is not enough, though, because as references have an extent they may overlap
And if they overlap one can’t be after the other. To have an ordering properly defined we
must have that the first Teference is entirely before the second. That is, f the value measured

it mean that a reference comes

is on the first it will be before the s¢

Mathematically, this type of ords
before and stricdly after. It does no
One may be tempted to define the
requires refining the references and, |
refined references, ot the original o

Definition 8.22. A reference is
the first it connot be on or after the
Proposition 3.23. Reference onl
o irveflerivity: not <
 tramsitivity: if <o and
and is therefore a strict partial ¢
Proof. For irreflexivity, sinee tl

and therefore bv o=ova. Therefo
irteflexive.
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Proof. By definition, we have -ba-a <o and by 1.23 ~(-ba-a)v

Definition 3.19. A reference 1 = (b, 01,21) is finer than another reference 7 = (bz, 02,37)

Corollary 3.20. The finer relationship between references is a partial order.
Proof. As the finer relationship is

ireetly based on narrowness, it inherits its reflexivity,
antisymmetry and transitivity properties and is therefore a partial order.

Definition 3.21. A reference is strict i its before, on and after statements ane incom-
patible. Formally, r=(b,0,a) is such that b+ 2 and 0= -ba-a. A reference is loose if it

Remark. In general, we can’t turn a loose reference into a strict one. The on statement
ean be made strict by replacing it with ~ba-a. This is possible because o is not required to
iable. The before (and after) statements would need to be replaced with statements
like b A ~a, which are not in general verifiable because of the negation.
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vavo. O For transitivity, if 11 < 2, we have by v o, # 02 v 22 and therefore ~(b; ver) 7 03 vay
by 1.23. Since b v o1 var = T, we have a1 = ~(bi v o1). Similarly if r2 < rs we'll have
227 ~(b2vo2) > 0gvas. Putting it all together ~(brver)  02vaz = a2 > ~(bavez) > svas,
which means b1 v o1 # 03 vas. o

Corollary 8.24. The relotionship < s, defined to be true if &y <7y OT M = Ty, i35 &
partial order.

e saw, two refarences may overlap and therefore an ordering between them cannot be
defined. But reforences can overlap in different ways.

Suppase we have a vertical line one millimeter thick and call the left side the part before
the line and the right side the part after. We ean have another vertical line of the same
thickness overlapping but we can also have a horizontal lino which will also, at some point,
overlap. The case of the two vertical lines is something that, through finding finer references,
can be given 2 linear order. The case of the vertical and horizontal line, instead, cannot
Intuitively, the vertical lines are aligned while the horizontal and vertical are not

Concapuually, the overlapping vertical lines are aligned because we can imagine narrower
lines around the borders, and those lines will be ordered references in the above sense: cach
line would be complately bofora or after, without intersection. This means that the before and
not-after statements of ene reference are either narrower or broader than the before and not-
aftor statements of the other. That i, alignment can also be defined in terms of narrowness
of statements.

Note that. if a roference i strict, beforo and afier staiements are not compatible and
therefore the before statement is narrower than the not-after statement. This means that,
given a set of aligned strict refarences, the sat of all hefore and not-after statements is linearly

ardorod b marrownoss

ts, a clock will keep ticking. What does

it is after the second it will also be after the first

As wa saw in tha nrevians section this was s neesssary condition
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by v o) & (b v oy van) = (b vor) aba)v
(b1 v 01) Abz. Therefore by v or £ bz, And
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Proof. We have by v oy = (by vor) AT =
(b von) A (02va2)) = (b vor) aba) v 1
since by < by vor, we have by < b
(02v32) AT=(02va) A (b vorva) = ((02va) A (b v
v((o2va3) nay) = (o3 vaz) nay. Therefora a3y 0y < 21. And sinca
3150,V 3a, Wo have 3 <31

Since by v oy #0 v 3y, we have by # 3 which means by < ~aj.

Since by vo; va = T, we have ~a < by vor. Similarly ~ba < 03 vay. Since by vo; # 0z vaz,

# bz and therefore ~ay < bs.

Since by % by, 32 % 3y, by % ~3; and ~a < by, the two references are aligned. =]

Definition 3.33. Let D be a domain generated by a set of references R. A reference
r= (b.0,a) is said to be aligned with D if be Dy and a ¢ Da.

Eropastinlon CIEah{se el evetnmual ooty il b/ e/l e
references R and let D =Dy u~(D,). Then (D, <) is linearly orde

Proof. By 3.26 we have that B = By u~(B,) is aligned by narrowness. By 3.15 the
ordering extends to o

Having a set of aligned roferences is not necassarily enough to cover the whole space at all
levels of precisian. Ta do that we need to make sure that, for example, between two references
that are not consecutive we can at least. put a reference in between. Or that if we have two
references that overlap, we can break them apart, into finer ones that do not overlap and one
s after the other.

We call a set of references refinable if the domain they generate has the above mentioned
properties. This allows us to break up the whole domain into a sequence of references that
do not overlap, are linearly ordered and that cover the whole space. As we get to the finest
references, their before statements will be immediately followed by the negation of their after
statements, since there can’t be any reference in betwoen. Conceptually, this will give us the
second and the third condition of the demain ordering theorem 3.16.

Proposition 3.28. Let 11 = (b1,01,31) and 1y = (bs. 02,32) be two strict references. Then
7 <my if and only if ~a, %

Proof. Letr, <. By 3.27, we have —a; < by. Conversely, let -2, < by. Then ~a; # -bz.
Bocause the references are strict, ~aj = by vo; and ~by = 03 v ay. Therefore by vo; # 0yvay
and ry <2 by def o

Definition 3.29. A reference is the immediate predecessor of another if nothing can be
Jound before the second and after the first. Formally, r1 < r2 and a1 # bz, Two references
are consecutive if one is the immedinte successor of the other.

Definition 3.35. Let D be an experimental domain generated by o set of aligned references
R. The set of references is refinable if, given two strict references 1y = (bi,01,31) and
1y = (b2,0,20) aligned with D, we can aluays:

» find an intermediate one if they are not consecutive; that i, if Ty < vy but ry is nat
the immediate successor of 7y, then we can find a strict reference vy aligned with D
such that ry < ry <.

» refine overlapping references if one is finer than the other; that s, if 0; <0y, we can
find a strict reference v aligned with D such that og < o, and either by = by end
<My orag=a; and re Ty

Proposition 3.30. Let 1 = (by,01,3;) and 1y = (by,02,22) be two referemces. Iy is
immediately before 1 then b = -a1.
Proof. Let r; be immediately before ra. Then ay # by which means b, < ~a1. By 3.27
we also have ~a; < bs. Therefore bz = ~a; o
Proposition 3.31. Let 1 = (by,01,3,) and 1y = (b, 0,32 be two sirict references. Then
i immediately before vy if and only if by = -a)
Proof. Let £y be immediately before ra. Then by = ~a) by 3.30. Conversely, let by = ~a1.
Then 1y <1 by 3.25. We also have 3, # ~ay, therefore a, # b; and 1, is immediately before
o

ry by definition. Proposition 3. xa Let D be an ezperimental domain generated by o set of refinable aligned
striet referenices
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means we can find rg = (b, ~b A ~ag,3¢) for some b e Dy such that rg < ry and therefora
~a15b<-an

For the third, suppose a1 € D, and by e Dy such that ~a1 <bz. Then £ = (1,-a1,a1)
and r2 = (b2, ~ba, 1) are strict references aligned with the domain such that r1 < ra but ra
s not an immediate succassor of ;. This means we ean find rs = (b, -b A ~a,a) such that
£y <r3 <z and therefore —a; < b<-a s by o

Now we show that R consists of aligned strict references. We already saw that b # a
and wo also have ~b A ~a is incompatible with both b and a. The references are strict.
To show they are aligned, take two references. The before and not after statements are
linearly ordered by 3.14 which means the references are aligned.

To show R is refinable, note that each reference can be expressed as (“z < 217, “n <
<z, %> 2,") where 21,73 X and “z; <z s 7" = “T2 7" Az < . Thatls,
every reference 1s identified by two possibilities 2,7, such that 2, < r2. Therefore take
Z w0 references r1,r2 € R and lot (21,22) and (25, 24) be the respective pair of possibilities
sirict references. Then all elements of I} are part of o pair (sp.~sa) such that s € Ty, we can use to express the references as we have shown. Suppose r; < ry but they are not
5o & D and s, is the immediate suceessor of s, #n D or's, = ~sa. Moreover if s D has e e T Ty P K et oy e vy
it ey (G, which means “z <2,” % “r < 25" and “T < 25" 5 “r < 3", Therefore the reference ry€ R
identified by (x5, 75) is between the two references. On the other hand, assume the second
referenco i finer than the first. Then 7, < Tg and 7, £ £ With either T, & T3 or T3 & To.
Consider the references £3,rq € R identified by (z1,2,) and (zz,z2). Either ry < 1 or
ry < 1y Also note that the before statemenis of r) and rg are the same and the afier
statements of ; and ry are the same. Therefore we satisfy all the requirements and the
sot R is refinablo by definition. o

ition 3.37. Let D be an experiy d ed by @ set of refinable alig

Proof. Let D be an experimental domain generated by a set. of refinable aligned strict.
roferences. Lot s, € Dy Lot A= (acDylavs # 7). Lot s,= Y 2. First wo show that

%% Wehavesh Sa=sA-Vazsap-a Ase.ma For all a € A we have

avsy# T, -a# sy which means s, < -a because of the total order of D. This means that
SA-a= s, for all 3¢ A, therefore S A —Sa = S, and S < ~Sa.

Next we show that no statement se ) is such that sj < < ~Se. Let 2 € D such that
st < -a. By construction a ¢ A and therefore ~s, < -a. Therefore we can’t have s; <a < s
W also can’t have b e Dy such that s < b < ~s,: by 3.36 we'd find a € D, such that
st <a % b < -5, which was ruled out. Sﬂthemmtwnmm Either 5 # -5, then s, < s,
5, is the immediate successor of b. Or

Themnemmmngmbeapphadstmmgﬁnmsaéﬂ 10 find a sy € Dy such that s is
the immediate predecessor of s, or an equivalent statement. This shows that all elements
of D) are paired.

"To show that. if a statement in D) has a successor then it must ba a before statement,
lot 51,5 € D) such that sy is the immediate successor of s;. By 3.36, in all cases whera
S1# Dy and s, ¢ Dy we can always find another statement between the two. Then we must
have that s; € Dy and sz € B, o

To recap, experimentally we construct ordering by placing references and beimg able 1o
tell whether the object measured is before or after. Wo can define a linear order on the
possibilitics, and therefore a quantity, only when the set of reforences meets special conditions,
The references must be strict, meaning that before, on and after are mutually exclusive.
They must be aligned, meaning that the before and not-afier siatement must be ordered by
narrowness. They must be refinable, meaning when they overlap we can always find finer
reforences with well defined before/after relationships. 17 all these conditions apply, we have
& linear order. If any of these conditions fail, a linear order cannot. be defined.

The possibilities, then, correspond to the finest Teferences we can construct within the
domain. That is, given a value gy, we have the possibility “the value of the property is go”
and we have the reference ( “the value of the property is less than gy, “the value of the property
is qo”, “the value of the property is more thon go”)

Theorem 3.38 (Reforence ordering theorem). An experimental domain is naturaily or-
dered if and anly if it can be generaied by a set of refinable aligned sirict references.
3.4 Discrete quantities

Proof. Suppose D is an experimental domain generated by a set of refinablo aligned
strict, references. Then by 3.34 and 3.37 the domain satisfies the requirement of theorem
3.16 and therefore is naturally ordered.

Now suppose Dy is naturally ordered. Define the st By, B, and D as in 3.12. Let
R=((b,~bA~a,2) b By,ac B,.b<—-a) be the set of all reforences constructed from the
basis. First lot us veriy they are references. The before and afier statements are verifiablo
since they are part of the basis. The on statement b A a is not a contradiction sinca
b<-ameansb#aand bz -a The on statement is broader than b A -a as they are
equivalent and it is broader than b a3 as that is a contradiction since b < ~a. Therefora
is a et of references. Since the before and afier statements of R coincide with the basis of
the domain, Dy is generated by R.

Now that we have scen the general conditions 1o have a naturally ordered experimental do-
‘main, we study common types of quantities and under what conditions they arise. We start
with discrete ones: the mumber of chromosomes for a species, the number of inhabitants of a
country or the atomic number for an element are all diserote quantities. These aze quantities
that are fully characterized by integers (positive or negative).
We will see that d have a simple
thera can only be  finte number of other roferences.
The frst thing we want to do 1s characterize tho ordering of the Integers. That Is, we want
o

between two references

a subset of integers. First we note that between any two integers there are always finitel
many eloments. Let’s call sparse an ordered st thar has that property: that between two

elements there are only finitely many. This is enough to say that the order is isomorphic to
D



Reference ordering theorem

To define an ordered sequence of “instants”, the references must be (nec/suff conditions):
* Strict —an event is strictly before/on/after the reference (doesn’t extend over the tick)

e Aligned — shared notion of before and after (logical relationship between statements)
* Refinable — overlaps can always be resolved

Additionally:

Between any two references we can always have another reference = real numbers

For time, these conditions are idealizations

% ASS;@EEEHS C. A. Aidala - G. Carcassi - University of Michigan
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Inevitable failure of time ordering

Assumptions
Physics



How does this model of time break down?

The ticks of a clock have an extent and so do the events (references not strict)
If clocks have jitter, they cannot achieve perfect synchronization (references not aligned)

We cannot make clock ticks as narrow as we want (references not refinable)

No consistent ordering: no “objective” “before” and “after”

In relativity, different observers measure time differently, but the order is the same. We
should expect this to fail at “small” scales.

A better understanding of space-time means creating a more
realistic formal model that accounts for those failures

% Ass;}@gité(;ns C. A. Aidala - G. Carcassi - University of Michigan
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What type of models should we use?  Hardtosay, butwe
— can argue from

necessity
(N.B. this is a toy

AN » Lack of order at small scales,

m ) point

should have f order at large enough scale
Yy many

neighbors) °

What we can distinguish

/ experimentally (i.e. topology) seems
! to be linked to how precisely we want

to distinguish (i.e. geometry)

Current mathematical tools have a hard division between
topology and geometry

Assumptions
Physics

Likely need new math



Our reasoning contradicts the expectations of many that time is
simply “discrete” at the smallest scale

This intuition is based on the idea that the continuum is like the
discrete but “with more points”

This idea (though extremely common in physics) is flawed

Assumptions . . . . . .
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Topology of the reals Connected: cannot be divided
Open set —open interval into two disjoint open sets

Always space between two references

VA A that .do not overlap: it’s what makes it a
JU JUUL continuum

N

N
N
/
N

Reference

No contingent decidable statements

Topology of the integers

Disconnected: can be divided into

Reference two disjoint open sets

/

o o)e(o o o o)o[e o oleJo[o o o o o o o o o o o o o o o

No space between two consecutive references

All contingent statements are decidable

Assumptions . . . . . .
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Conclusion

* Physically well-defined objects must be in terms of operational definitions

* The primitive elements are the verifiable statements, which are typically idealized and left
formally undefined

* A physical theory is fully characterized by the logical relationships of countably many verifiable
statements
* Time is what is measured by a clock
. '(Ij'h]g m?jin feature of clocks is that they can be synchronized with each other, which is operationally
efine

. CIOde?c can be formally modeled by a set of ticks that experimentally define a before
and after

* We recover time as a continuum under suitable idealized conditions (i.e. all clocks can be perfectly
synchronized, reach arbitrary resolution, ...)

* We should not expect the assumptions required by ordered (and continuous) time to
hold at the smallest scale

* A better understanding of space-time means creating a more realistic formal model that takes
into account those failures

Assunflptions
Physics
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