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Assumptions of Physics

e This talk is part of a broader project called Assumptions of Physics
(see http://assumptionsofphysics.org/)

* The aim of the project is to find a handful of physical principles and
assumptions from which the basic laws of physics can be derived

* To do that we want to develop a general mathematical theory of
experimental science: the theory that studies scientific theories
* A formal framework that forces us to clarify our assumptions
From those assumptions the mathematical objects are derived
Each mathematical object has a clear physical meaning and no object is unphysical
Gives us concepts and tools that span across different disciplines

Allows us to explore what happens when the assumptions fail, possibly leading to
new physics ideas


http://assumptionsofphysics.org/

General mathematical theory_ Experimental verifiability
of experimental science . .
leads to topological spaces, sigma-algebras, ...

State-level assumptions

Infinitesimal reducibility Irreducibility

leads to classical phase space leads to quantum state space

Process-level assumptions
Hamilton’s equations

Deterministic and reversible on oH

d
: 2@n=(3.-2)
evolution “ v 3
leads to isomorphism on state space lhalp = HY

Non-reversible evolution Thermodynamics

Euler-Lagrange equations

Schroedinger equation

| Kinematic equivalence
5 L(q,q,t) =0 leads to massive particles
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Mathematical structure for space-time

e Riemannian manifold

* Differentiable manifold + inner product

* Topological manifold + differentiable structure
* Ordered topological space + locally R"

* Topological space + order topology

* If we want to understand why (i.e. under what conditions) space-time
has the structure it has, we first need to understand why (i.e. under
what conditions) it is a topological space, it has an order topology, ...



Mathematical structure for space-time

e Riemannian manifold Geometry (lengths and angles) starts here:

most fundamental structures are not

* Differentiable manifold +‘inner product‘/ geometrical

* Topological manifold + differentiable structure
* Ordered topological space + locally R"
* Topological space + order topology

* If we want to understand why (i.e. under what conditions) space-time
has the structure it has, we first need to understand why (i.e. under
what conditions) it is a topological space, it has an order topology, ...



Simple things first

* A similar hierarchy is present for other mathematical structures used
in physics
* Hilbert space — Inner product space + closure under Cauchy sequences —
Vector space + inner product — ...

* If we want true understanding, then we need to understand the
simpler structure first

* This is what our project, Assumptions of Physics, is about



Outline

* In this talk we will focus on topology and order. We will:
* Show that topologies naturally emerge from requiring experimental
verifiability
* Show that an order topology corresponds to experimental verifiability of
guantities: outcomes than can be smaller, greater or equal to others
* Then we need to understand how quantities are constructed from
experimental verifiability

* That s, find a set of necessary and sufficient conditions under which experimental
verifiability gives us an order topology

* Argue that, in the end, those conditions are untenable at Planck scale, and
that ordering cannot be experimentally defined

e Conclude that all that is built on top of an order topology (manifolds,
differentiable structures, inner product) fails to be well defined at Planck scale



Verifiable statements

* The most fundamental math structures are from logic and set theory
* All other structures are based on that

* For science, we want to extend these with experimental verifiability

* Our fundamental object will be a verifiable statement: an assertion
for which we have (in principle) an experimental test that, if the
statement is true, terminates successfully in a finite amount of time

* Verifiable statements do not follow standard Boolean logic:

* We may verify “there is extra-terrestrial life” but not its negation “there is no
extra-terrestrial life”

* No negation in general, finite conjunction, countable (infinite) disjunction



What is a topology?

* Given a set X, a topology T € 24 is a collection of subsets of X that:
* It contains X and @
* In general, not closed under complement
* It is closed under finite intersection and arbitrary (infinite) union

* How do we get to this in physics?



Start with a countable set of verifiable statements
(the most we can test experimentally). We call this

a basis.
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Verifiable statements Dy

€é1 e e3 S1=eq1Vey S, = ejNeg
F F F .. F F

F T F T F

T T F F

The experimental domain Dy induces a natural topology
on the set of possibilities X

The role of logic (and math) in science is to capture
what is consistent (i.e. the possibilities) and what is
verifiable (i.e. the verifiable statements)

D
(7]
2
=
S
(7]
(7]
o
a.

Start with a countable set of verifiable statements
(the most we can test experimentally). We call this
a basis.

Construct all verifiable statements that can be
verified from the basis (close under finite
conjunction and countable disjunction). We call
this an experimental domain

Consider all truth assignments: it is sufficient to
assign the basis

Remove truth assignments that are impossible
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Examples

* “the mass of the photon is less than 10~ 13eV” is verifiable and
corresponds to an open set (a set in the topology)

* “the mass of the photon is exactly 0 eV” is not verifiable and is not an
open set (not a set in the topology)

* However, it is falsifiable and corresponds to a closed set (the complement is in
the topology)

* Topological concepts (second countability, Hausdorff spaces,
interior/exterior/boundary, ...) can be better understood in terms of
experimental verification

* They are not some abstract mathematical thing: they are physically
meaningful



Quantities

* We can define a quantity as a measurable property of a system that
has a magnitude: can be compared to another of the same kind and
found to be greater or smaller

 Mathematically a quantity is formed by:

e aset(
* alinear (total) ordering <:Q X Q —» B

* the order topology generated by the linear ordering, whose basis elements
are of the form (—o0, @) and (g, +0); that is, we can always tell
experimentally whether something is more or less than something else

* equality, in general, is not experimentally testable: for continuous quantities corresponds
to infinite precision measurements



Constructing quantities and references

* The question is: how do we operationally construct quantities? How can
we model that appropriately?

* We start with the idea of a reference: something physical that partitions
our range into a before, on, and after

 E.g. aline on aruler, the tick of a clock, a standard weight for a balance scale, a
threshold on an A/D converter

before after

on

* Mathematically, a reference is a tuple of three statements b/o/a; only
before and after are required to be experimentally verifiable



Constructing quantities and references

* Problem 1 - In general, before/on/after are not mutually exclusive

T F F O

F T F

F F T D
T T F

F T T

T T T

In this case, the possibilities of the domain cannot correspond to distinct values

Gabriele Carcassi - University of Michigan 20



Strict references

* We say a reference is strict if before/on/after are mutually exclusive

T F F O
F T F
F F T D

e If the extent of what we measure is smaller than the extent of our
reference, then we can always assume our references are strict

Gabriele Carcassi - University of Michigan
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Multiple references

* Problem 2 - To construct a reference scale we need multiple
references, but in general these would not construct a linear order

* \We need to define what it means for before after

references to be aligned purely on the
logical relationship between statements




Ordered references

* We can say that reference 1 is before reference 2
if whenever we find something before or
on the other, it must be before the second

* More precisely, if by Vo, 4 0, V a,
« A Means the statements are incompatible,
they can’t be true at the same time
* Note how by < —a4 < by < —a,

* Where a < b (a is narrower than b) means
that if a then b must be true as well b
1




Aligned references

* More in general, we can say that two references are aligned if the
before and not-after statement can be ordered by narrowness

* For example, b; < b, < —a4 < a,

b
< Means that if the first statement is true :

02

A

then the second statement will be true as well
* That is, the first statement is narrower, more specific

* Here we see how the ordering of references is
related to the logical ordering defined by the
specificity (narrowness) of the statements

* We need our references to be aligned if we want
to construct a linear ordering b,

A

Gabriele Carcassi - University of Michigan
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Resolving the overlaps

* Problem 3a - If two different references overlap, we can’t say one is
before the other: we can’t fully resolve the linear order

* Problem 3b - Conversely, if two reference don’t overlap and there can
be something in between, we must be able to put a reference there

* We always need a way, then, to find (possibly finer) references to
explore the full space



Refinable references

* Conceptually, a set of references is refinable if we can solve the
previous problems:

* if two references overlap we can always refine them to two that do not
overlap

* if two ordered references are not consecutive (there can be something in
between) we can always construct a reference in the middle

* Mathematically is not complicated, but is tedious and not so
interesting

 With these definitions and some work...
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which returns elements of the original set and therefore reduces to eountable conjunetions.
Therefore, when forming Dy the only new elements will be the countable disjunctions.

Considr two conntable sets By, B < By Their disjunctions by =y bandba= v b
soprosent tho marmowes statement that is broader than all clemants o ho respective skt
Suppose that for each element of B, we can find a broader clement in By Then by, being
‘roader than all elements of By, will be broader than all elements of By. But since by is
the narrowest clement that is broader than all elements in B, we have by = by. Conversaly,
suppose there is some eloment in B, for which there is no broader cloment in By. Since
the initial set is fully ordered, it means that that element of By is broader than all the
elements in B,. This means that element is broader than b, and since by is broader than
all clements in By we have b, > by, Therafore the domain Dy generated by B is linearly
ordered by narrowness,

Now we show that (Da,) is linearly ordered. The basis By is linearly ordered by
roadness becanso the negation of its elements are part of B and are ordered by narrowness.
Note that broadness is the opposite order of narrowness and therefore a.set. linearly ordered
by one is linearly ordered by the other. Therefore B, is also linearly ordered by narrowness
and s 3 D, by tho previous argument. Theroforo D, is ordered by broadness.

To show that D = Dyu~(D,) i linearly ordered by narrowness, we only need to show
that the countable disjunctions of clements of By are cither narrower or broadel
countable conjunctions of the negations of elements of B,. Let By c By and A4
disjunetion by, = \/ b represents the narrowast statement. that is broader than al

of By while the conjunction ~az =~ V/

A -a represents the broadest state]
is narrower than all elements of ~(4s). Suppose that for one cloment of ~(A:
find & broader statement in B;. Then by, being broader than all clements in £
‘broader than that one element in ~(A;). But since ~a; is narrower than all el
~(Az), we have ~a < by. Comversely, suppose that for no element of ~(42) we s
roader statement in By. As B is linearly orderod, it means that all elements in
‘broader than all lements in B,. This means that all clements in ~(A1) are bro
by and therefore by < ~a2. Therefore I 1s lincarly ordered by narrowness.

Theorem .16 (Domain ordering theorem). An experimental domain Dx is
ordered if and only if it is the combination of two experimental domains DX = Da
that:

(i) D= Dyu~(D.) is lineariy ondered by narrowness

(i) all clements of D are part of o pair (S,,~S,) such that s, € Dy, Sz € Dy ¢
either the immediate successor of sy in D) or = ~Ss

(iti) #s€ D has on immediate successor, then s€ Dy

Proof. Let Dx be a naturally ordered experimental domain. Let By and B, |
as in 3.12 which means B = B, U B, is the basis that generates the order topc
Dy be the domain generated by By and D, be the domain generated by By. Tl
Ds and D, by finite conjunction and countable disjunction and

W
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order
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imental
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mass of the system s miore then @ Ko” 1s also ordered by narrowness but with the reverso
ardaring of the passibilitos/ values. These are the yory statemeaits whose vorifiablo secs define
tho arder topology asxl thervfors Jointly constitate a basis for the experimental domais.

Now consider the statemens 51 = “he maxs of the system i less than or egual 10 1 Ko®
with 53 = “the mass of the system is fess than 1 Ko®, Wo haw 53 %51 In fact, if wo roplace

the valuo in 5, with anything ke than | Kg wo'll still have 5, < 3. nstoad if wo we a vabu
greater than | Kg wo'd have 5 %55, In other words, 1f we call B the set that inclides both
the lass-than-or-oqual and

Toss-than siatements this s also linearly ordered by narrowness,
equivalent to ~Yhe mass of the

i gy Ko™ and ~the mass of the system is more than g;
Av and these are all linoarly ml.w by narrowness.
ing of B can be further charactoriaed. Noto that 5, = *the mass of the syatem

40 o s a0 7.y o the Ui auconmcr of = She o f the s &
leas than 1 Ko, Tha is, they are different and there can't bo any othar statemen 1n B that
s bronder than 3 but marrower than 3, since they diffor for a singh case. This will happen
for aty mass value. So B Is compased of two exact eopies of the ardertng of X. wharo cach
e f com oy 1 el Wfomed 1 s st o i i cop: w3

atorment. in B b an immodiate succcsor, there must be oaly oe case thit soparates the
e 1w ol o i of ik o, i th ki o o th form B o
of the system is less than g1 Ko® while s immodiate successor is of tho form “the mass of
The st i lss than or eyual 10 0, Ky tha succnesce Is broade by Jut (ho poeiblly
awsoctatod with g, Tharolore stasesnorts 1o B that have a imediate sucomssor st be i
By s el

The main result Is that tho above charactertzation of the basts of the domain s pecwssary
and sufficiont to order the possbilities. 1f an oxperimental doman has i hasis composed of
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To provo (1), we have tha B, and B, are linearly ordercd by 3.14. We noed to show that
the lincar ordering holds across the sets. Let 21,72 ¢ X and consider the two statements
“rem” and * €12 =%z > 13", As X 1s linearly ordered, sullwr(je)ﬂx(;n)t(x(
Xjz<m)or (rEX\r(n)((x&X\z‘(m} Thoreforo cither *z < £1” < “r < 227
Yrem < tren Toans B 0 (5, s mcarly ovdared by <. B 3.15 tho st
D= Dyu~(D,) is o lincarly ordered

To prove (), let s, € Dy, Take s, € D, such that —s, Is the narrowest statement in
~(D,) that 1s broader than s;. This axists boeauso D, Is closed by Infinite disjunction. As
~sa = 53, let X be the set. of possibilities compatible with s, but not compatible with s,
The set cannot have more than one element, or we could find an element z; € X such that
S < 22 <-s,. If X; contains ono possibilty, then s, 1 the mmadiato successor. If
X, is empty then s; = ~s,. Similarly, we can start with s, < Dy and find s; ¢ Dy such that 5,
s the broadest statement in T that 1s narrower than —s,. Let X; be the set of possibilties
compatible with ~s, but not compatible with s, If Xy contains one possibility, then s,
s the immediate succossor and §f X, is empty then & = —s,.

o prove (iii), let 51,53 € D such that s, is the immediate successor of s1. This means
we can write 52 =s1v 11 for some £ € X. This means 1= *r < 21" whilosz = “r < ;" and
thorefore 5, < B
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of the i Let (** : By - B, be the funct h that ~(b**) = -b* is
the immediate successor of b. Lot b : X — By be the fanction such that z = ~b(z)a-b(z)*".
On X deline the odering < uc hat 1 <22 f e aly of ()  b{e). Sics (B )
15 Imearly ordered 50 15 (X.<). To show that the ordering is natural, suppose 11 < r2
Uhen bz, © b+ < bz and theroore 21 bas). Wa aloo have ~b(e1)++ ¢ b(as) <
~b(zz)* and therefore 7, < b(z;)**. This means that given a passibility =, ¢ X, all and
only the possibilities lower than T, are compatible with b(z1) and therefore b(z;) = “z <
;" while all and enly the possibilities greater than z; are compatible with b(z;)** and
therefore b(z1)** = “r > 7;". The topology is the order topology and the domain has a
‘matural ordering. =)

References and experimental ordering

In the previous section we have characterized what a quantity is and how it relates to an
experimental domain. But as we saw in the first chapters, the possibilities of a domain are
not objects that exist a priori: they are defined based on what can be verified experimentally.
Therefore simply assigning an ordering to the possibilities of a domain does not answer the
ructed? How do we, in practice,
ereate a system of reforences that allows us to measure a mmmw at a given lovel of precision?
What are the assumptions we make in that process?

In this section we construct ordering from the idea of a reference that physically defines
a boundary between a before and an fter. In general, a reference has an extent and may
overlap with others. We define ordering in terms of eferences that are clearly before and
after others. We see that the possibilities have a natural ordering only if they are generated
from a set of references that is refinable (we can always find finer ones that do not overlap)
and for which before/on/after are mutually exchusive cases. The possibilities, then, are the
finest references passible.

‘W ara by now so used of the ideas of real mumbers, negative numbers and the mmber zero
that it is difficult to realize that these are mental constructs that are, in the end, somewhat
rocent in the history of humankind. Yet geometry itself started four thousand years ago as
an experimentally discovered colloction of rules concerning lengths, areas and angles. That
s, human beings were moasuring quantities well before the real mumbers were invented. So,
how does one construct instruments that measure values?

To measure position, we can use a ruler, which is a series of equally spaced marks. We
#ive a label to each mark (e.g. a umber) and note which two marks are closest to the target
position (e.g. between 1.2 and 1.3 cm). To measure woight, we can use a balance and a sot of
equally prepared reference weights. The balance can clearly tell us whether one side is heavier
than the other, so wo use it to compare the target with a number of reference weights and
noto the two closest (o.g. between 300 and 400 grams). A clock gives us a series of evants to
compare to (e.g. earth's rotation on its axis, the ticks of a clock). We ean pour water from
& Teferencs container into another as many times as are needed to measure its volume. In all
thesa eases what actually happens is similar: we have a reforence (e.g. a mark on a ruler,
a set of equally prepared weights, a number of ticks of a clock) and it is fairly easy to tell
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0 (X.9).
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w{reX[r<n)c(reX|rcn). Theokoro oither * 5" « z < 13"
<", Which mooans = By u ~(Ba) Is inearly ordered by <
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wely penernie and D = Dyo~(D,). Then (Dy.1), (Da.>) end (D, <) are lmeary

st wo show that (D). ) s Hinearly orderod. We have that 8, is lincarly ordered
ekl & e o mhich My Gced by naiorne. o0
Junction of a finite set of iy oedered by narrownes will return
. o and tho duguncion of e s of ik Wy el

t eraent. The con jon, istend, can
» pleaprodiimpemmmdmhes
1o of countable disfunctions will stll be & countable disjunction: the finke
of coutable disjunctions is the countable disjunction of fnite conjunctions,
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Note that determining whether the quantity is exactly equal to the reference is not as easy
the mark on the ruler has a width, the balance has friction, the tick of our clock wil last a
finite amount, of time. That is, the Teference itself can only he compared up to a finite level
of precision. This may be a problem when constructing the references themselves: how do we
know that the marks on our ruler are equally spaced, or that the weights are equally prepared,
or that ticks of our clock are equally timed? It is a circular problem in the sense that, in a
wiay, we need to be able to create
Yot oven if our roferences can't be perfoctly compared and are not perfoctly equal, wo can
still say whether the value is well before or well after any of them.

To make matters worse, the objeet we are measuring may itself have an extent. If we
aro measuring the position of a tiny ball, it may be elearly beforo or clearly afier the nearest
mark, but it may also be partly before, partly on and partly after. One may try to sidestep
the problom by measuring part of the object, say the position of the conter of mass or of its
closest part. But this assumes we have a process to interact with only part of the objoct, and
that part can only be before, on or afier the reference. It may be a reasonable assum
many cases but we have to be mindful that we made that assumption; our general definition.
will have to be able to work in the less ideal cases,

Tn our general mathematical theory of experimental science, we can capture the above
discussion with the following definitions. A reference is represented by a set of three state-
ments: they tell us whether the object is before, on or after a specific reference. To make
sense, these have to satisfy the following minimal requirements. The before and the after
statements must.be verifiable, as otherwise they would not be usable as references. As the
reference must be somewhere, the on statement cannot be a contradiction. If the object is
not before and not after the reference, then it must bo on the reference. If the abject is before
and after the reforence, then it must also be on the reforence. These requiraments recognize
that, in general, a reference has an extent and so does the objeet heing measured

o can compara the extent of two references and say that ona is finar than the other if
the on statement is narrower than the other, and the before and after statements are wider.
This corresponds to a finer tick of a ruler or a finer pulse in our timing system. We say that
a reference s strict if the before, on and after statements are incompatible. That is, the three
cases are distinct and can't be true at. the same time.

Definition 3.17. .4 reference defines o before, an on and an ofter relationship between
atself and another object. Formally o reference 1= (b,0,a) @ @ tuple of three statements
uch that:

1. we can verify whether the object is before or after the reference: b and 3 are verifiable
statements

the object can. be on the reference: 0% 1

ot before or after, it's on the reference: ~ba-a< o

4 a/'u: before and after, it’s also on the reference: baa <o

A beginning reference has nothing be/mr it. That is, b= 1. An ending reference hos
nothing fter it. That is, inal reference is either beginning or ending

»

"
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Proof. By definition, we have ~ba-a <0 and by 1.23 ~(~ba-a) v.

vavo. O

Deofinition 3.19. A reference 1y = (b1, 01,31) is finer then another reference vy = (bz, 02,32)
ifbizbr, o1 <0z and & x 22

Corollary 3.20. The finer relationship between references is e partial oner.

Proof. As the finer relationship is directly based on narrowness, it inherits its reflexivity,
antisymmetry and transitivity properties and is therefore a partial order.

Definition 3.21. A reference is striet if its before, on end after statements are imcom-
patible. Formally, r= (b,0,a) is such that b# 2 ond 0= ~bA~a. A reference is loose if it
is nat strict.

Remark. n general, we can’t turn a Joase reference into a strict one. The on statement
can bo made strict by replacing it with ~ba—a. This is possible because o is not. required 1o
‘be verifiable. ‘The before (and after) statements would ned to be replaced with statements
like b ~a, which are not in general verifiable becauso of the negation.

“To measure a quantity we will have many references one after the other: a ruler will have
many marks, a scala will have many reference weights, a clock will keep ticking. What does
it mean that a reference comes after anather in terms of the before/on fafter statements?

If roference ry is before reforence ry wo expect that if the vale measured is before the
first it will also be before the second, and if it is after the second it will also be after the first
Note that this is not enough, though, because as references have an extent they may overlap
And if they overlap one can’t be after the other. To have an ordering properly defined we
must have that the first Teforence is entirely before the second. That is, if the value measured
s on the first it will be before the se

Mathematically, this type of ord:
before and strictly after. It does no
One may be tempted 1o define the
requires refining the references and,
refined roforences, ot the original o

Definition 3.22. A reference is b
the first it cannat be an or after the since bi < b v.or, we have by < b

Similarly, we have oz v a:
o)) v((ogvaz)am
3,50, vay, we have 2,52,

Propaosition 3.23. Reference ond

o irreflerivity: not v
o tromsitivity: if Ty < vy and vy
Since by vo; va

a3 # ~bz and therefore -a; < b;
Since by < by, 32 < a1, by £ -3, and

and is therefore o strict partial

Proof. For irreflexivity, since tl
and therefore by o=ova. Therefo

irreflexive. n <ry if and only if ~ay <by .

Because the references are strict, -a
and ry <13 by definition.

immediately before ry then by =-a,.

Then ry <13 by 3.28. We
12 by definition,
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Tor transitivity, if r; < ra, we have by v oy # 02 v 3 and therefora ~(by v o;) > 03 vay
by 123, Since by vorvar = T, we have a1 = ~(bi v or). Similarly if r2 < rs we'll have
a2 ~(b2vo2) > 03va. Putting it all together ~(by ver) » 0zva > a2 = ~(bz vez) = e3vas,
which means by v o1 # 03w 3. o

Corallary 3.24. The relationship v < 1y, defined to be true if <™ orm=my s 0

partial order.

AS we saw, two references may overlap and therefore an ordering between them cannot be
defined. But references can overlap in different ways

Suppose we have a vertical line one millimeter thick and call the loft side the part hefore
the line and the right side the part after. We can have another vertical lino of the same
thickness overlapping but we can also have a horizontal line which will also, at some point,
overlap. The case of the two vertical lines is something that, through finding finer reforences,

can be given a linear order

The case of the vertical and horizontal line, instead, cannot.

Intuitively, the verical lines ae aligned while the horizontal and vertieal are not.

Coneeptually, the overlapping vertical lines are aligned because we can imagine narrower
lines around the borders, and those lines will be ordered reforences n the above sense: each
line wonld be completely before or after, without intersection. This means that the before and
not-after statements of one reference are either narrower or broader than the before and not-
after statements of the other. That is, alignment can also be defined in terms of narrowness
of statements.

Note thai. if a reference is strict, before and afier siatements are not compatible and
therefore the before statement i narrower than the not-after statement. This means tha,
siven a set of aligned strict references, the set of all before and not-after statements is linearly

Proof. We have by v oy = (b vor) a T =
(b vor) A (02va)) = ((br vor) abz) v L = (by v o1) abz. Therefore by vor < bz And

(02va) AT= (02 van) A (b vor var)
v ((orvaz)na

ardarod b narroumass
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by vor) A (bgvozvag) = ((byvor) abs)v

(02va2) A (b1 v
o va) nay. Therefore agv oy < ;. And since

Since by v o) # 0 v 3y, we have by # a3 which means b; < -ay.
7, we have ~ay £ by vey. Similarly ~bs < 03vaz. Since by voy # 0zvas,

—a1 % by, the two references are aligned. (=]

Proposition 3.28. Let 1y = (b1,01,31) and 1y = (b2, 02,3;) be two strict references. Then

Proof. Letr <rz. By 3.27, we have ~a; < by. Conversely, let ~a, < by. Then ~a; # ~by
=bivo; and by =

Vay. Therefote by v o, 40;van
o

Definition 3.29. A reference is the immediate prodecessor of another if nothing can be
Jound before the second and after the first. Formally, ru < vz and a4 bz. Two references
are consecutive if one is the immediate successor of the other.

Proposition 3.30. Let r = (bi,01.31) and ry = (b3,02.22) be two neferemces. I my is
Proof. Let r; be immediately before r;. Then a, by which means b, < ~a;. By 3.27
we also have ~ay < by. Therefore by = -ay o

Proposition 8.31. Let 1 = (b1,01,31) and 1 = (b, 02.32) be two strict references. Then.
i immediately before v 3f and only if by = -a

Proof. Lot ry be immediately before ra. Then by = ~a; by 3.30. Conversely, let by = ~a;
o also have a 4 ~a, therefore a; # by and 1y is immediately before
o
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means we can find g = (b, ~b A ~a2,32) for some b Dy such that rg < ry and therefore
~arsbe<-an.

For the third, suppose a1 € Dy and by e Dy such that ~a; < bz, Then £y = (1,-a1,21)
and rz = (b2, ~ba, 1) are sirict references aligned with the domain such tha r1 <z but r2
is not an immediate succassor of r;. This means we can find rs = (b, -b A ~a,a) such that
£y <r3 <7 and therefore —a; <b<-a < by o

Proposition 3.37. Lei D be an experimental domain generted by a set of refinable aligned
strict references. Then all elements of I are part of a pair (s, ~s,) such that sy < Dy,
S € Dy and -, is the immediate successor of sy in D or sy = ~s,. Moreover if se DD has
an immediate successor, then s ¢ Dy.

Proof. Let D be an experimental domain generated by a set of refinable aligned strict
references. Let 5, € Ds. Lot A= {a ¢ Dalavs, 2 7). Lot = V a. First we show that
555 5 Wehavesin5,=SA-Vazsia A -3 Asia-a Forallaca we have
avsy# T, -a £ s which means s $)i; becaus:cff the u:l‘a] order of D. This means that
s A Y e e e ey el i

Next we show that no statement s € [7 is such that s, <s < -sa. Let a € Da such that
55<~a. By construction a ¢ A and thareforo s, 5 -a. Thereforo we can’t huvo <3 < ~Sa.
We also can’t have b e Dy such that sp < b < ~s, by 3.36 we'd find a € D, such that
sp<a s b« -5, which was ruled out. So there are two cases. Either s; -5, then s, < o0
s, I the immodiste successor of b. Or 5 = —s,.

“The same reasoning can be applied starting from s, € D, to find a sy € Dy such that sy is
the immediate predecessor of ~5, or an cquivalont statcment. This shows that all cloments
of D are paired.

‘To show that if a statement in [? has a successor then it must be a before statement,
let 51,5 € D such that 5, i the tmmediate successor of 5. By .36, in al cases where
s1# D and 55 ¢ D, we can always find another statement between the two. Then we must
have that 5, ¢ Dy and s, € D. o

Theorem 3.38 (Reference ordering theorem). An experimental domain is naturally or-
dered if and only if it con be genernted by a set of refinable aligned strict references.

Proof. Suppose Dx is an experimental domain generated by a set of refinable aligned
strict. references. Then by 3.34 and 3.37 the domain saisfies the requirement of theorem
3.16 and therefore s naturally ordered,

Now suppose Dy i naturally ordered. Define the sot By, B, and D as in 3.12. Let
R=((b,~bn-a,a) be By,ac Ba b <-a} be the set of all references constructed from the
basis. First let us verify they are references. The before and after statements are verifiable
since they are part of the basis. The on statement —b o a is not a contradiction sinco
b<-ameansb #aand b? -a. The on statement is broader than —b A -a as they are
equivalent and it is broader than baa as that is a contradiction since b < a. Therefore R
is a set of reforences. Since the efore and afier statements of R coincide with the basis of
the domain, Dy 1s generated by R

A% wa saw in tha nrevians saction this was 5 noeassary endirion
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Definition 8.38. Let D be  domain generated by a sei of references R. A reference
7= (b,0,a) is said to be aligned with D ifbe Dy and a€ Da.

Proposition 3.34, Let D be en experimental domain generated by a set of aligned strict
references R and let D = DyU~(Pa). Then (D) is kncariy ordered.

Proof. By 3.2 we have that B = Byu~(B,) is aligned by narrowness. By 3.15 the
ordering extends to o

Having a set of aligned references is not. necassarily enough to cover the whole space at all
lovels of precision. To do that we need to make sure that, for example, between two references
that are not consecutive we can at least put a Teference in between. Or that if we have two
Teferences that overlap, we can break them apart into finer ones that do ot overlap and ene
is after the other.

We call a set of references refinable if the domain they generate has the above mentioned.
‘properties. This allows us to break up the whole domain into a sequence of references that
do not. overlap, are linearly ordered and that cover the whole space. As we get to the finest
reforences, their before statements will ba immediately followed by the negation of their after
statements, since there can’t be any reference in between. Conceptually, this will give us the
second and the third condition of the domain ordering theorem 3.16.

Definition 3.35. Let D be an eperimental domain generated by o set of aligned references
R. The set of references is refinable if, given two strict references ™ = (by,01.21) and
7, = (b2,04,3;) aligned with D, we con always:

o find an intermadinte one if they are not consecutive; that is, if vy <y but 3 is not
the immediate successor of vy, then we can find a strict reference vy aligned with D
suck that ry <1y < 1,

« refine overlapping references if one is finer than the other; that is, i 03 < o1, we can
find o strict reference v aligned with D such that o3 % 0y and cither by = by end
mycrorag=a andmyeny

Proposition 8.36. Let D be an experimental domain genernted by a set of refinable aligned

striet refevences R.

3.4 DISCRETE QUANTITIES i

Now we show that R consists of aligned strict references. We already saw that b # a
and we also have ~b A ~a is mcompatible with both b and a. The references are sirict.
To show they are aligned, take two references. The before and not afier statements are
linearly ordered by 3.14 which means the references are aligned.

o show R is refinable, note that each roforance can be expressed as (“r < z,”, “r; <
2%z, % > 2y") where 21,72 ¢ X and *z; € 1< 7" = *r > m” Ar <z, That is,
avery reforence is identified by two possibilities 21, 7, such that 7, < 7. Therofor uh
two references ry,ry € R and lov (z,,z,) aad (5,74) be the respoctive pai of p
We can e to express the references as we have shown. Suppose ry < T but they are not
consceutive. Then *z <2,” < "z(r;" That 5, we can find 75 € X such that 2, <25 <25
which means “r < 23" < T < x3” and “r <z5” % “r < 5”. Theroforo the reference ry € B
identified by (25, 25) i between the two references. On the other hand, assume the second
reforence is finer than the first. Then 2, < 7 and 2, < 7, with either 2, # 23 or 24 # 22,
Consider the references rs,ry « R identified by (r1,z,) and (z3,22). Either rg < r3 or
r2 <1y Also note that the before statements of ry and ry are the same and the after
statements of r; and ry are the same. Therefore wo satisfy all the requirements and the
set. R is refinable by definition o

"To recap, experimentally we construct ordering by placing references and being able to
Lol whether 1he ohiject messed 1 befors or atter. Wo can defne a mear order on the
possibilities, and therefore a quantity, only when the st of reforences meets special conditions.
The references must be strict, meaning that before, on and afier are mutually exclusive.
They must be aligned, meaning that the before and not-after statement must be ordered by
narrowness. They must be refinable, meaning when they overlap we can always find finer
efironces with well defined before/after relationships. If all these conditions apply, we have
2 linoar order. If any of these conditions fail, 2 linear order cannot be defined.

The possibilities, then, correspond (o the finest reforonces wo can construct within the
domain. That is, given a value go, we have the possibility “the value of the property is ao”
and we have the reference ( “the value of the property is less than av”, *the value of the property
is o, “the value of the property is more than gy”).

Discrete quantities

Now that we have scen the general conditions to have a naturally ordered experimental do-
main, we study common types of quantities and under what conditions they arise. We start
with discrete ones: the mumber of chromosomes for a species, the number of inhabitants of a
country or the atomic mumber for an element are all discrete quantities. These are quantities
that are fully characterized by intogors (posicive of nogative).
W will see that d havo a simplo
there can only be a finite number of other reforences.
“The first thing we want. to do is characterize the ordering of the integers. That is, we want
1o find necessary and sufficient conditions for an ordered sot of clements to be isomorphic to
a subset of integers. First we note that between any two integers there are always finitely
many elements. Lev's call sparse an ordercd sot that has that property: that between two
elements there are only finitely many. This is enough to say that the order is isomorphic to

e

betwoen two reforences.



Reference ordering theorem

* An experimental domain is fully characterized by a quantity if and
only if it can be generated by a set of refinable aligned strict

references
Strict The quantity is always only before/on/after the reference. This can be assumed if the extent of
what we measure is smaller than the extent of the reference.
Aligned The before/after statement have an ordering in term of narrowness (specificity).
Necessary to have a coherent before and after over the whole range.
Refinable If we have overlaps, we can always construct finer references.

Necessary to create smallest mutually exclusive cases that correspond to the values.

Gabriele Carcassi - University of Michigan 28



Integers and reals

* If we assume that between two non-overlapping references we can

only put finitely many references, then the ordering is the one of the
Integers

* Equality can be tested as well

* If we assume that between two non-overlapping references we can
always put another, then the ordering is the one of the reals
* Equality cannot be tested in this case

* These are the only two orderings that are homogeneous, where all
references have the same properties

* And that is why they are the most fundamental in physics



Are these requirements tenable at Planck scale?

Property of | Meaning Problems
references

Strict The quantity is always only before/on/after the
reference. This can be assumed if the extent of
what we measure is smaller than the reference.

Aligned The before/after statements have an ordering in
term of narrowness (specificity).

Necessary to have a coherent before and after over
the whole range.

Refinable If we have overlaps, we can always construct finer
references.

Necessary to create smallest mutually exclusive
cases that correspond to the values.

Objects measured and references are ultimately of
the same kind; their extent should be comparable

If indistinguishable particles are the smallest
references and are placed very close to each other,
it is not clear how can be sure they haven’t
switched

The whole point of reaching Planck length is that
we cannot further refine our references

Gabriele Carcassi - University of Michigan 30



Are these requirements tenable at Planck scale?

* If we take the quantum nature of the references into consideration,
all the requirements seem untenable

* Note that all three are necessary: if even only one fails we have a problem

* What fails is ordering itself

* |s not that the real numbers need to be changed to rationals or integers: we
don’t have numbers to begin with



Failure of ordering

. RiemanM] manifold

e Differentiable %ifold + inn%roduct

. Topc)éical manifold + differentiable}(mture
* Ordered tQ¥ological space + Ioca)@%"
* Topological space + order ydpology

* If ordering fails, all the structures that are based on ordering fail as
well. No manifold, no differentiability, no calculus, no inner product,
no geometry. We need to develop a new chain of mathematical tools.

Gabriele Carcassi - University of Michigan 32



Conclusion

* Topology, the simplest mathematical structure needed for geometry,
has a clear well-defined meaning in terms of experimental verifiability
* This is appropriate as experimental verifiability is the foundation of science

* Order topology, the next required structure, formally captures the
ability to experimentally compare quantities
* The ordering is generated by logical relationships: if “x<8” then also “x<10”

* For real numbers, the requirements can only be satisfied ideally, most
likely leading to a breakdown at Planck scale

* The idea that our “measurement device” is “classical” is baked into the very
nature of the order topology, which can’t then be undone up the stack



Conclusion

* The standard mathematical toolchain (i.e. manifolds,
differentiability/integration, differential geometry, Riemannian
geometry, ...) needs to be rethought

* The idea that we can take something and divide it into infinitesimal
contributions is intrinsically classical

* In the same way that the geometry of space-time (i.e. the metric
tensor) depends on the energy/mass distribution, the topology may
depend on it as well

* The foundations of physics lie in understanding the most basic
mathematical structures, their physical significance and how they can
be generalized



General mathematical theory_ Experimental verifiability
of experimental science . .
leads to topological spaces, sigma-algebras, ...

State-level assumptions

Infinitesimal reducibility Irreducibility

leads to classical phase space leads to quantum state space

Process-level assumptions
Hamilton’s equations

Deterministic and reversible on oH

d
: 2@n=(3.-2)
evolution “ v 3
leads to isomorphism on state space lhalp = HY

Non-reversible evolution Thermodynamics

Euler-Lagrange equations

Schroedinger equation

| Kinematic equivalence
5 L(q,q,t) =0 leads to massive particles
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For more information

* Assumptions of Physics project website:
http://assumptionsofphysics.org/

* Topology and Experimental Distinguishability
Christine A. Aidala, Gabriele Carcassi, and Mark J. Greenfield, Top.
Proc. 54 (2019) pp. 271-282
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