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Before we start

• Disclaimer: we are not going to talk in general of the role of 
mathematics in science. Just its role within a physical theory.
• By role we mean its “technical” function, what it formally captures

• We are not going to discuss sociological roles, inspiration roles, etc…

• The viewpoint presented here is profoundly shaped by our work on 
our project “Assumptions of Physics”
• It forced us to understand where the line between scientific theories and 

mathematical frameworks is



Assumptions of Physics

• The aim of the project is to find a handful of physical principles and 
assumptions from which the basic laws of physics can be derived
(see http://assumptionsofphysics.org)

• To do that we need to develop a general mathematical theory of 
experimental science: the theory that studies scientific theories
• A formal framework that forces us to clarify our assumptions
• From those assumptions the mathematical objects are derived
• Each mathematical object has a clear physical meaning and no object is 

unphysical
• Gives us concepts and tools that span across different disciplines
• Gives us a better understanding of what the laws of physics are and what they 

represent



Experimental verifiability
leads to topological spaces, sigma-algebras, …

…

Infinitesimal reducibility
leads to classical phase space

Irreducibility
leads to quantum state space

Deterministic and reversible 
evolution

leads to isomorphism on state space

Non-reversible evolution

Kinematic equivalence
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Outline

• First we will get familiar with the basic ideas
• We do not have time to see all details, but we have to see at least some parts 

to get a sense of what it means to properly formalize scientific concepts

• We will present a formalism to properly capture semantic properties and 
relationships of the type we have in science and see how this formalism leads 
necessarily to topologies and sigma-algebras (the foundations of differential 
geometry, measure theory, probability theory, …)

• Once we have seen exactly how physical concepts are encoded into 
mathematical structures, we can draw conclusions



• The principle of scientific objectivity tells us that science deals with 
assertions that are:
• either true or false (non-contradictory)

• for everybody (universal)

• and experimentally verifiable (evidence-based)

• We call such assertions verifiable statements
• The first two requirements are the same as in classical logic

• The third means we have an experimental test that we can run and, if the 
statement is true, it completes successfully in finite time



Examples of verifiable statements

• Examples:
• The mass of the photon is less than 10−13 eV
• If the height of the mercury column is between 24 and 25 millimeters then its 

temperature is between 24 and 25 Celsius
• If I take 2 ± 0.01 Kg of Sodium-24 and wait 15 ± 0.01 hours there will be only 1 ±
0.01 Kg left

• Counterexamples:
• Chocolate tastes good (not universal)
• It is immoral to kill one person to save ten (not universal and/or evidence-based)
• The number 4 is prime (not evidence-based)
• This statement is false (not non-contradictory)
• The mass of the photon is exactly 0 eV (not verifiable due to infinite precision)

• We need a mathematical framework to capture these concepts



Statements

• In mathematical logic, statements are sentences constructed from a well 
defined set of symbols
• I.e. ¬,∧,∨, ∃, ∀, 𝑎, 𝑏, 𝑐, …
• They are so defined to avoid paradoxes, the “web of meaning” and therefore give a 

rigorous foundation to mathematics, study proof theory, etc…

• This does not work for us
• Science started well before we had those symbols
• Science is about the web of meaning

• In science, statements are the assertions represented by the sentences
• “This animal is a cat” is the same statement as “Quest’animale e’ un gatto”
• “The desk is 1 meter wide” is the same statement as “The desk is 3.28083989501 

feet wide”



Statements

• Statements themselves are not formally defined
• We are not going to try to define a grammar or try to specify what “meaning” 

means, we just have symbols to represent them mathematically

• but we axiomatically give them properties from which we can 
construct formal propositions
• E.g. truth 𝒔1 = TRUE



Assignments

• In mathematical logic, logical relationships are defined by their truth value
• For example 𝑝 → 𝑞 is false if 𝑝 is true and 𝑞 is false
• Therefore “4 is a prime number” implies “𝜋 is transcendental”
• Moreover, the semantic is said to define what is true or not true

• This does not work for us
• “This animal is a dog” implies “this animal is a mammal” is about what we could possibly 

find, not on whether it happens to be true or not
• The meaning (i.e. the semantic) of “Secretariat will win the race tomorrow” is clear even if 

we don’t know the truth value

• In science, the truth is found experimentally and the semantic has to be clear 
before we run the tests

• Logical consistency is about what hypothetical truths we can find within a certain 
model
• For example, “this animal is a cat” and “this animal is a dog” can’t be both assigned true



Assignments

• As with statements, we don’t try to formalize how the possible assignments are derived
• It would require “meaning”

• but we axiomatically give them properties from which we can construct formal 
propositions



Statements as functions of other statements

• This allows us to create functions of statements
• In particular, we have negation (logical NOT), conjunction (logical AND) and 

disjunction (logical OR)

• Note that logical operators are not symbolic connectors
• They are algebraic operations



Formal system for informal statements

• Those three axioms are enough to capture all the semantic structure 
we need to guarantee logical consistency even on informal 
statements
• Any set of consistent statements that have a universal truth will fit the axioms

• A set of inconsistent statements violates the second axiom as there would be 
no possible assignment



Statement equivalence

• They allow to distinguish between different notions of equivalence

“This animal is a bird” = “Questo animale e’ un uccello”
“This animal is a bird” ≡ “This animal has feathers”
truth(“This animal is a bird”) = truth(“That animal is a mammal”)

Are the same statement

Must have the same truth

Happen to have the same truth



Tautologies and contradictions

• We can distinguish between statements based on the truth values 
they are allowed

“This swan is a bird” is a tautology, “This cat is a dog” is a contradiction 
and “This animal is a cat” is contingent



Other semantic relationships



Other semantic relationships

For example:
narrower than

“This animal is a cat” ≼ “This animal is a mammal”

incompatible

“This animal is a cat”      “This animal is a dog”

independent

“This animal is a cat”       “This animal is black”



Logical context as an algebraic structure

• We can prove that a logical context is a complete Boolean algebra, 
that narrowness imposes a partial order, …

• The algebraic structure we defined on the logical context captures the 
minimum logical and semantic relationships between our statements 
to guarantee universality and non-contradiction
• Any further structure we impose on a logical context to capture other 

semantic relationships will need to interact with the previous structure in a 
well defined manner

• That is, the notions of equivalence, independence, ordering, etc… defined on 
this structure will be inherited in some fashion by all other structures



Verifiable statements

• Now that we have a framework rich enough to capture all the statement 
relationships we need, we turn our attention to experimental verification

• A statement is verifiable if we have a repeatable procedure that terminates 
successfully in finite time if and only if the statement is true
• This is hard to define formally so we won’t

• Note that not all statements are experimentally verifiable
• We can verify that “there exists extra-terrestrial life” or that “the mass of the photon 

is less than 10-18 eV”

• We cannot verify that “there exists no extra-terrestrial life” or that “the mass of the 
photon is exactly 0 eV”



Verifiable statements

• What makes a statement verifiable is not formally defined
• There is a sense that trying to fully specify what can be measured is 

equivalent to already knowing the laws of physics

• But we have to ask: under what operations is the set of verifiable 
statements closed?
• Is it a Boolean algebra?



Logic of verifiable statements

• We can’t always test negation
• The test is not guaranteed to terminate if the test is unsuccessful

• If we can, we say the statement is decidable

• We can always test the finite conjunction
• Just test one statement at a time: if they are all true all tests will terminate in 

finite time 
• We cannot have infinitely many tests though: we wouldn’t terminate in finite 

time

• We can always test the countable disjunction
• Once just one test terminates successfully, we are done
• We cannot extend to uncountably many: we wouldn’t be able to find the test 

that terminates in finite time



Logic of verifiable statements



Comparing algebras
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Sets of verifiable statements

• Now that we have captured how we verify single statements, what 
can we say about verifying a collection of statements?

• Specifically, what’s the biggest set of verifiable statements we can 
verify?

• Clearly, we do not need to run the test for all the elements
• Once we verify that 𝒔1 is true we already know that 𝒔1 ∨ 𝒔2 is also true



Basis

• What is the biggest basis we can experimentally 
test?

• A countable set
• Even with unlimited time, we can only test countably 

many statements



Experimental domain

• This represents the biggest set of verifiable 
statements we can test
• Any scientific theory, in the end, is equivalent to a set of 

verifiable statements, which forms at most an 
experimental domain



Predictions

• Science is also about making predictions, but not all predictions are 
directly verifiable

• For example, “there exists no extra-terrestrial life” predicts that the 
test for “there exists extra-terrestrial life” is never going to terminate

• While we cannot always experimentally confirm negation, it still 
makes sense logically as a possible way things could be



Theoretical domain

• This represents all statements that give meaningful 
predictions to (and only to) the verifiable 
statements in the domain



Possibilities for the domain

• Among all the predictions we look for the ones that give the full 
picture
• For example, if we knew “This animal is a cat” to be true, we would also know 

that “This animal has whiskers” and “This animal is a mammal” are true while 
“This animal has feathers” is false



Possibilities for the domain

• A possibility, if true, gives a prediction for all 
theoretical and verifiable statements

• The set of possibilities corresponds to all the cases 
we can experimentally distinguish given the 
experimental domain



Basis 𝓑

𝒆𝟏 𝒆𝟐 𝒆𝟑 …

Start with a countable set of verifiable statements (the most we can verify experimentally)



Basis 𝓑 Verifiable statements 𝓓𝑿

𝒆𝟏 𝒆𝟐 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ 𝒆𝟐 𝒔𝟐 = 𝒆𝟏 ∧ 𝒆𝟑 …

Construct all verifiable statements that can be verified from the basis
(close under finite conjunction and countable disjunction)



Basis 𝓑 Verifiable statements 𝓓𝑿 Theoretical statements  𝓓𝑿

𝒆𝟏 𝒆𝟐 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ 𝒆𝟐 𝒔𝟐 = 𝒆𝟏 ∧ 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ ¬𝒆𝟐 𝒔𝟐 = ¬𝒆𝟏 …

Construct all statements that give a prediction for those verifiable statements
(close under negation as well)



Basis 𝓑 Verifiable statements 𝓓𝑿 Theoretical statements  𝓓𝑿

𝒆𝟏 𝒆𝟐 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ 𝒆𝟐 𝒔𝟐 = 𝒆𝟏 ∧ 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ ¬𝒆𝟐 𝒔𝟐 = ¬𝒆𝟏 …

F F F … F F … T T …

… … … … … … … … … …

F T F … T F … F T …

T T F … T F … T F …

… … … … … … … … … …

Consider all truth assignments: it is sufficient to assign the basis



Basis 𝓑 Verifiable statements 𝓓𝑿 Theoretical statements  𝓓𝑿

𝒆𝟏 𝒆𝟐 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ 𝒆𝟐 𝒔𝟐 = 𝒆𝟏 ∧ 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ ¬𝒆𝟐 𝒔𝟐 = ¬𝒆𝟏 …

F F F … F F … T T …

… … … … … … … … … …

F T F … T F … F T …

T T F … T F … T F …

… … … … … … … … … …

Remove truth assignments that are not possible



Basis 𝓑 Verifiable statements 𝓓𝑿 Theoretical statements  𝓓𝑿

𝒆𝟏 𝒆𝟐 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ 𝒆𝟐 𝒔𝟐 = 𝒆𝟏 ∧ 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ ¬𝒆𝟐 𝒔𝟐 = ¬𝒆𝟏 …

F F F … F F … T T …

… … … … … … … … … …

F T F … T F … F T …

T T F … T F … T F …

… … … … … … … … … …

𝒙 = ¬𝒆𝟏 ∧ 𝒆𝟐 ∧ ¬𝒆𝟑 ∧ ⋯

For each consistent truth 
assignment we have a minterm
that is true only in that case. 
Each minterm is a possibility of 
the domain. 
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Each consistent truth assignment is associated with a possibility of the domain



Basis 𝓑 Verifiable statements 𝓓𝑿 Theoretical statements  𝓓𝑿

𝒆𝟏 𝒆𝟐 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ 𝒆𝟐 𝒔𝟐 = 𝒆𝟏 ∧ 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ ¬𝒆𝟐 𝒔𝟐 = ¬𝒆𝟏 …

F F F … F F … T T …

… … … … … … … … … …

F T F … T F … F T …

T T F … T F … T F …

… … … … … … … … … …

𝒙 = ¬𝒆𝟏 ∧ 𝒆𝟐 ∧ ¬𝒆𝟑 ∧ ⋯

For each consistent truth 
assignment we have a minterm
that is true only in that case. 
Each minterm is a possibility of 
the domain. 
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Each consistent truth assignment is associated with a possibility of the domain

The role of logic (and math) in science is to capture 
what is consistent (i.e. the possibilities) and what is
verifiable (i.e. the verifiable statements) and the
corresponding logical relationships



Basis 𝓑 Verifiable statements 𝓓𝑿 Theoretical statements  𝓓𝑿

𝒆𝟏 𝒆𝟐 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ 𝒆𝟐 𝒔𝟐 = 𝒆𝟏 ∧ 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ ¬𝒆𝟐 𝒔𝟐 = ¬𝒆𝟏 …

F F F … F F … T T …

… … … … … … … … … …

F T F … T F … F T …

T T F … T F … T F …

… … … … … … … … … …

𝒙 = ¬𝒆𝟏 ∧ 𝒆𝟐 ∧ ¬𝒆𝟑 ∧ ⋯

For each consistent truth 
assignment we have a minterm
that is true only in that case. 
Each minterm is a possibility of 
the domain. 
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Each consistent truth assignment is associated with a possibility of the domain

For example, verifiable statements corresponds to 
open sets in a topology while theoretical statements
correspond to Borel sets in a 𝝈-algebra



Basis 𝓑 Verifiable statements 𝓓𝑿 Theoretical statements  𝓓𝑿

𝒆𝟏 𝒆𝟐 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ 𝒆𝟐 𝒔𝟐 = 𝒆𝟏 ∧ 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ ¬𝒆𝟐 𝒔𝟐 = ¬𝒆𝟏 …

F F F … F F … T T …

… … … … … … … … … …

F T F … T F … F T …

T T F … T F … T F …

… … … … … … … … … …
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The lines of the truth table (i.e. the possible 
assignments) are the points



Basis 𝓑 Verifiable statements 𝓓𝑿 Theoretical statements  𝓓𝑿

𝒆𝟏 𝒆𝟐 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ 𝒆𝟐 𝒔𝟐 = 𝒆𝟏 ∧ 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ ¬𝒆𝟐 𝒔𝟐 = ¬𝒆𝟏 …

F F F … F F … T T …

… … … … … … … … … …

F T F … T F … F T …

T T F … T F … T F …

… … … … … … … … … …
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Each column is a set (i.e. the set of 
possibilities that are true in that column)



Basis 𝓑 Verifiable statements 𝓓𝑿 Theoretical statements  𝓓𝑿

𝒆𝟏 𝒆𝟐 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ 𝒆𝟐 𝒔𝟐 = 𝒆𝟏 ∧ 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ ¬𝒆𝟐 𝒔𝟐 = ¬𝒆𝟏 …

F F F … F F … T T …

… … … … … … … … … …

F T F … T F … F T …

T T F … T F … T F …

… … … … … … … … … …
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The experimental domain is the topology 
(i.e. each verifiable statement is an open set)

conjunction and disjunction becomes intersection and union



Basis 𝓑 Verifiable statements 𝓓𝑿 Theoretical statements  𝓓𝑿

𝒆𝟏 𝒆𝟐 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ 𝒆𝟐 𝒔𝟐 = 𝒆𝟏 ∧ 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ ¬𝒆𝟐 𝒔𝟐 = ¬𝒆𝟏 …

F F F … F F … T T …

… … … … … … … … … …

F T F … T F … F T …

T T F … T F … T F …

… … … … … … … … … …
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The basis of the experimental domain is a 
sub-basis of the topology



Basis 𝓑 Verifiable statements 𝓓𝑿 Theoretical statements  𝓓𝑿

𝒆𝟏 𝒆𝟐 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ 𝒆𝟐 𝒔𝟐 = 𝒆𝟏 ∧ 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ ¬𝒆𝟐 𝒔𝟐 = ¬𝒆𝟏 …

F F F … F F … T T …

… … … … … … … … … …

F T F … T F … F T …

T T F … T F … T F …

… … … … … … … … … …
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The theoretical domain is the 𝝈-algebra (i.e. 
each theoretical statement is a Borel set)

negation and countable disjunction becomes complement and countable union



Logical consistency and mathematics

• Mathematical structures deal with logical consistency
• Most mathematicians, in fact, focus on whether the objects are well defined 

and not whether they can be found in practice (e.g. axiom of choice)

• As we want science to be logically consistent, physical theories will be 
mathematical structures but not all mathematical structures can be 
physical theories
• For example, as an experimental domain must have a countable basis, the 

cardinality of the possibilities (the cases we can distinguish experimentally) is 
at most that of the continuum



Mathematics captures the semantic structure 

• Experimentally verifiable statements are represented by topologies

• Theoretically sound statements are represented by 𝜎-algebras

• Composition of parts into wholes is represented by vector spaces

• Objects whose description can be given by a set of numbers are represented by 
manifolds

• Descriptions with commensurable quantities give rise to geometrical structures

• If our objects allow distributions and densities then they are represented by 
differentiable manifolds

• If those densities are coordinate invariant then we have symplectic manifolds

• Deterministic and reversible evolution is logical equivalence between statements about 
future and past states which leads to isomorphism in whatever category is used to 
describe states

• …



Mathematics captures the semantic structure 

• Once the semantic structure of the theory is made clear, the 
mathematical structure follows and there is a perfect mapping 
between mathematical concepts and physical concepts
• Every mathematical theorem can be read line by line as a physical argument

• If there is no perfect mapping, then either the theory is incomplete (i.e. some 
physical concept is not captured by the mathematical framework) or not 
completely physical (i.e. some mathematical objects do not correspond to 
physical ones)

• The converse is not true, even if the mathematical structure of a 
theory is made clear, its semantic structure cannot be reconstructed
• Two different scientific theories can have the same mathematical structure



Science → Math is a forgetful functor
(Mathematics is meaningless)
• Note that the way we made our discourse “precise” was not by 

making everything “precise” but by dropping what couldn’t be made 
precise
• What is the meaning of a statement, what does it mean for it to be true, how 

does the meaning rule out assignments, when can we say that a statements is 
verifiable, … these cannot be formalized

• But what is left out is the actual physics
• the fact that those symbols represent statements in the real world, that the 

labels we use to identify statements represent quantities that correspond to 
specific measurements, that those statements have relationships



Reformulation

• A model change, then, can then happen in two ways: within the same context or 
by changing context altogether

• If the context/experimental domain is the same, we have a purely mathematical 
reformulation
• the meaning of the statements must remain the same, what is verifiable is the same
• we can only change how the relationships are captured mathematically

• If the context/experimental domain is different, we have a different physical 
theory
• the meaning of the statement may change, how tests are mapped to statements may change
• unavoidable with new experimental techniques, different assumptions, 
• whether or not the mathematical structure is the same is inconsequential

• Naturally, model changes are a continuum, they are never formalized, so whether 
a particular case falls in one category or the other can be a matter of opinio



Conclusion

• Mathematics studies logically consistent structures

• Science studies theories and models that are not only logically consistent, but are 
universal and allow experimental verification
• The mathematical structures we use in physics (e.g. topology, 𝜎-algebras, measures, metrics, …) 

are there precisely to keep track of the logical structures of statements: how are they logically 
related, which ones are verifiable, which ones are more precise and by how much, and so on

• As we are developing a general mathematical theory for experimental science, we had to 
clearly demarcate the line between scientific ideas and mathematical ideas

• The result is that the only role mathematics has within a physical theory is to keep track 
of logical/semantic relationships between scientific statements within the theory. For 
example:
• If “that animal is a dog” is true then “that animal is a cat” is not true
• “The mass of the photon is less than 10^-10 eV” can be verified experimentally while “the mass of 

the photon is exactly 0” cannot be verified experimentally
• If “within the volume V there is 1 Kg of gaseous helium” is true then “within the volume v there is 

1/2 Kg of gaseous helium” is true for some sub volume v



Experimental verifiability
leads to topological spaces, sigma-algebras, …

…

Infinitesimal reducibility
leads to classical phase space

Irreducibility
leads to quantum state space

Deterministic and reversible 
evolution

leads to isomorphism on state space

Non-reversible evolution

Kinematic equivalence
leads to massive particles

Hamilton’s equations
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Euler-Lagrange equations

𝛿∫ 𝐿 𝑞, ሶ𝑞, 𝑡 = 0

Schroedinger equation

𝚤ℏ
𝜕
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Thermodynamics

General mathematical theory
of experimental science

State-level assumptions

Process-level assumptions

For more information, see http://assumptionsofphysics.org


