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Motivation for this work

• This work has its root in an effort to better understand 
fundamental physics:
• Why is Hamiltonian time evolution a symplectomorphism?
• Why are classical states points of a cotangent bundle?
• Why are they points of a manifold?
• Why are they points of a topological space?

• Last year we presented our basic insight: a topology 
keeps track of what can be distinguished through 
experimentation
• It seems fitting that topology maps to such a fundamental 

concept for experimental science

• This year we try to see if we can construct a formal 
framework around these ideas



Overview

• The logic of verifiable statements
• Develop a Boolean-like framework to capture assertions, 

their semantic relationships and whether they can be 
tested experimentally

• Experimental domains and their possibilities
• Collect verifiable statements that can be tested together 

and identify the possible cases they can distinguish

• Natural topology for the possibilities
• Show that experimental domains always provide a 𝑇0

and second countable topology for the possible cases



The logic of verifiable 
statements



Requirements

• The first task is to develop a “logic framework” that 
recognizes these basic two requirements:
• Our truth bearers are not sentences (e.g. sequences of 

symbols in a language) but the assertions they make 
(regardless of the language)
• “This animal is a cat” and “Quest’animale e’ un gatto” state the 

same assertion

• The truth value in science is found experimentally. The 
role of logic (and math) is to keep track of what is 
meaningful and consistent
• “This animal is a cat” and “This animal is a dog” can’t both be 

true



Statements

• Statements themselves are not formally defined
• We are not going to try to define a grammar or try to 

specify what “meaning” means

• but we axiomatically give them properties from 
which we can construct formal propositions
• E.g. truth 𝒔1 = TRUE



Possibilities of statements

• Each statement has a set of possible truth values it 
can be hypothetically assigned



Possibilities of statements

• For example, “This swan is a bird” is a tautology 
and “This cat is a dog” is a contradiction



Logic relationships

• Lastly, we need to capture logical relationships 
between statements

• We’ll use the standard symbols for negation (¬), 
conjunction (∧) and disjunction (∨)



Logic relationships

• Given:
• 𝒔1=“This animal is a cat”

• 𝒔2=“This animal is a dog”

• poss 𝒔1 = poss 𝒔2 = {TRUE, FALSE}

• poss 𝒔1 ∧ 𝒔2 = {FALSE}

• We can deduce that:
• truth 𝒔1 = truth 𝒔2 = TRUE is not a consistent truth 

assignment

• The possibilities of statements allow us to rule out 
cases that are not meaningful



Statement equivalence

• From these starting points, we can:
• Define statement equivalence

“This animal is a bird” = “Questo animale e’ un uccello”
“This animal is a bird” ≡ “This animal has feathers”
truth(“This animal is a bird”) = truth(“That animal is a mammal”)

Are the same statement

Must have the same truth

Happen to have the same truth



Boolean algebra

• From these starting points, we can:
• Show the set of all statements is a (complete) Boolean 

algebra (in terms of the equivalence classes)



Other operators

• From these starting points, we can:
• Define other statement relationships



Other operators

For example:
narrower than

“This animal is a cat” ≼ “This animal is a mammal”

incompatible

“This animal is a cat”      “This animal is a dog”

independent

“This animal is a cat”       “This animal is black”



Verifiable statements

• Now that we have a framework rich enough to capture 
all the statement relationships we need, we turn our 
attention to experimental verification

• A statement is verifiable if we have a repeatable 
procedure that terminates successfully in finite time if 
and only if the statement is true
• This is hard to define formally so we won’t

• Note that not all statements are experimentally 
verifiable
• We can verify that “there exists extra-terrestrial life” or that 

“the mass of the photon is less than 10-18 eV”
• We cannot verify that “there exists no extra-terrestrial life” or 

that “the mass of the photon is exactly 0 eV”



Verifiable statements

• What makes a statement verifiable is not formally 
defined
• There is a sense that trying to fully specify what can be 

measured is equivalent to already knowing the laws of 
physics

• But we have to ask: under what operations is the 
set of verifiable statements closed?
• Is it a Boolean algebra?



Logic of verifiable statements

• We can’t always test negation
• The test is not guaranteed to terminate if the test is 

unsuccessful
• If we can, we say the statement is decidable

• We can always test the finite conjunction
• Just test one statement at a time: if they are all true all tests 

will terminate in finite time 
• We cannot have infinitely many tests though: we wouldn’t 

terminate in finite time

• We can always test the countable disjunction
• Once just one test terminates successfully, we are done
• We cannot extend to uncountably many: we wouldn’t be able 

to find the test that terminates in finite time



Logic of verifiable statements

• We capture what operations are allowed on 
verifiable statements with the following axioms



Comparing algebras

𝒮

𝒮𝑣
𝒮𝑑



Experimental domains 
and their possibilities



Sets of verifiable statements

• Now that we have captured how we verify single 
statements, what can we say about verifying a 
collection of statements?

• Specifically, what’s the biggest set of verifiable 
statements we can verify?

• Clearly, we do not need to run the test for all the 
elements
• Once we verify that 𝒔1 is true we already know that 𝒔1 ∨
𝒔2 is also true



Basis

• What is the biggest basis we can experimentally 
test?

• A countable set
• Even with unlimited time, we can only test countably 

many statements



Experimental domain

• This represents be biggest set of verifiable 
statements we can test
• Any scientific theory, in the end, is equivalent to a set of 

verifiable statements, which forms at most an 
experimental domain



Predictions

• Science is also about making predictions, but not all 
predictions are directly verifiable

• For example, “there exists no extra-terrestrial life” 
predicts that the test for “there exists extra-
terrestrial life” is never going to terminate

• While we cannot always experimentally confirm 
negation, it still makes sense logically as a possible 
way things could be



Theoretical domain

• This represents all statements that give meaningful 
predictions to (and only to) the verifiable 
statements in the domain



Possibilities for the domain

• Among all the predictions we look for the ones that 
give the full picture
• For example, if we knew “This animal is a cat” to be 

true, we would also know that “This animal has 
whiskers” and “This animal is a mammal” are true while 
“This animal has feathers” is false



Possibilities for the domain

• A possibility, if true, gives a prediction for all 
theoretical and verifiable statements

• The set of possibilities corresponds to all the cases 
we can experimentally distinguish given the 
experimental domain



Basis 𝓑

𝒆𝟏 𝒆𝟐 𝒆𝟑 …

Start with a countable set of verifiable statements (the most we can verify experimentally)



Basis 𝓑 Verifiable statements 𝓓𝑿

𝒆𝟏 𝒆𝟐 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ 𝒆𝟐 𝒔𝟐 = 𝒆𝟏 ∧ 𝒆𝟑 …

Construct all verifiable statements that can be verified from the basis
(close under finite conjunction and countable disjunction)



Basis 𝓑 Verifiable statements 𝓓𝑿 Theoretical statements  𝓓𝑿

𝒆𝟏 𝒆𝟐 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ 𝒆𝟐 𝒔𝟐 = 𝒆𝟏 ∧ 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ ¬𝒆𝟐 𝒔𝟐 = ¬𝒆𝟏 …

Construct all statements that give a prediction for those verifiable statements
(close under negation as well)



Basis 𝓑 Verifiable statements 𝓓𝑿 Theoretical statements  𝓓𝑿

𝒆𝟏 𝒆𝟐 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ 𝒆𝟐 𝒔𝟐 = 𝒆𝟏 ∧ 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ ¬𝒆𝟐 𝒔𝟐 = ¬𝒆𝟏 …

F F F … F F … T T …

… … … … … … … … … …

F T F … T F … F T …

T T F … T F … T F …

… … … … … … … … … …

Consider all truth assignments: it is sufficient to assign the basis



Basis 𝓑 Verifiable statements 𝓓𝑿 Theoretical statements  𝓓𝑿

𝒆𝟏 𝒆𝟐 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ 𝒆𝟐 𝒔𝟐 = 𝒆𝟏 ∧ 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ ¬𝒆𝟐 𝒔𝟐 = ¬𝒆𝟏 …

F F F … F F … T T …

… … … … … … … … … …

F T F … T F … F T …

T T F … T F … T F …

… … … … … … … … … …

Remove truth assignments that are not consistent with the possibilities of the statements



Basis 𝓑 Verifiable statements 𝓓𝑿 Theoretical statements  𝓓𝑿

𝒆𝟏 𝒆𝟐 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ 𝒆𝟐 𝒔𝟐 = 𝒆𝟏 ∧ 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ ¬𝒆𝟐 𝒔𝟐 = ¬𝒆𝟏 …

F F F … F F … T T …

… … … … … … … … … …

F T F … T F … F T …

T T F … T F … T F …

… … … … … … … … … …

𝒙 = ¬𝒆𝟏 ∧ 𝒆𝟐 ∧ ¬𝒆𝟑 ∧ ⋯

For each consistent truth 
assignment we have a minterm
that is true only in that case. 
Each minterm is a possibility of 
the domain. 
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Each consistent truth assignment is associated with a possibility of the domain



Basis 𝓑 Verifiable statements 𝓓𝑿 Theoretical statements  𝓓𝑿

𝒆𝟏 𝒆𝟐 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ 𝒆𝟐 𝒔𝟐 = 𝒆𝟏 ∧ 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ ¬𝒆𝟐 𝒔𝟐 = ¬𝒆𝟏 …

F F F … F F … T T …

… … … … … … … … … …

F T F … T F … F T …

T T F … T F … T F …

… … … … … … … … … …

𝒙 = ¬𝒆𝟏 ∧ 𝒆𝟐 ∧ ¬𝒆𝟑 ∧ ⋯

For each consistent truth 
assignment we have a minterm
that is true only in that case. 
Each minterm is a possibility of 
the domain. 
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Each consistent truth assignment is associated with a possibility of the domain

The role of logic (and math) in science is to capture
what is consistent (i.e. the possibilities) and what is
verifiable (i.e. the verifiable statements)



Natural topology for the 
possibilities



Basis 𝓑 Verifiable statements 𝓓𝑿 Theoretical statements  𝓓𝑿

𝒆𝟏 𝒆𝟐 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ 𝒆𝟐 𝒔𝟐 = 𝒆𝟏 ∧ 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ ¬𝒆𝟐 𝒔𝟐 = ¬𝒆𝟏 …

F F F … F F … T T …

… … … … … … … … … …

F T F … T F … F T …

T T F … T F … T F …

… … … … … … … … … …

𝒙 = ¬𝒆𝟏 ∧ 𝒆𝟐 ∧ ¬𝒆𝟑 ∧ ⋯

For each consistent truth 
assignment we have a minterm
that is true only in that case. 
Each minterm is a possibility of 
the domain. 
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Each consistent truth assignment is associated with a possibility of the domain

Where is the topology?!?



Basis 𝓑 Verifiable statements 𝓓𝑿 Theoretical statements  𝓓𝑿

𝒆𝟏 𝒆𝟐 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ 𝒆𝟐 𝒔𝟐 = 𝒆𝟏 ∧ 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ ¬𝒆𝟐 𝒔𝟐 = ¬𝒆𝟏 …

F F F … F F … T T …

… … … … … … … … … …

F T F … T F … F T …

T T F … T F … T F …

… … … … … … … … … …

𝒙 = ¬𝒆𝟏 ∧ 𝒆𝟐 ∧ ¬𝒆𝟑 ∧ ⋯

For each consistent truth 
assignment we have a minterm
that is true only in that case. 
Each minterm is a possibility of 
the domain. 

𝒔 = 𝒙∈𝑼ڀ 𝒔 𝒙

𝑼:𝓓𝑿 → 𝟐𝑿
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𝑨:𝓓𝑿 → 𝟐𝑿

ത𝒔 = 𝒙∈𝑨ڀ ത𝒔 𝒙

Each statement can be expressed in the 
disjunctive normal form (disjunction of minterms, 
OR of ANDs): a disjunction of possibilities.

Each statement can be expressed as the disjunction of a set of possibilities



We can express each verifiable statement in terms of a set of possibilities. 
Relationships between statements become relationships between sets.



Closure of the experimental domain under finite conjunction and 
countable disjunction means the set of verifiable sets is closed under finite 
intersection and countable union.

Similarly, the theoretical domain provides a natural 𝝈-algebra for the 
possibilities (i.e. the Borel algebra)



Basis 𝓑 Verifiable statements 𝓓𝑿 Theoretical statements  𝓓𝑿

𝒆𝟏 𝒆𝟐 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ 𝒆𝟐 𝒔𝟐 = 𝒆𝟏 ∧ 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ ¬𝒆𝟐 𝒔𝟐 = ¬𝒆𝟏 …

F F F … F F … T T …

… … … … … … … … … …

F T F … T F … F T …

T T F … T F … T F …

… … … … … … … … … …
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The lines of the truth table (i.e. the 
consistent truth assignments) are the points



Basis 𝓑 Verifiable statements 𝓓𝑿 Theoretical statements  𝓓𝑿

𝒆𝟏 𝒆𝟐 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ 𝒆𝟐 𝒔𝟐 = 𝒆𝟏 ∧ 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ ¬𝒆𝟐 𝒔𝟐 = ¬𝒆𝟏 …

F F F … F F … T T …

… … … … … … … … … …

F T F … T F … F T …

T T F … T F … T F …

… … … … … … … … … …
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Each column is a set (i.e. the set of 
possibilities that are true in that column)



Basis 𝓑 Verifiable statements 𝓓𝑿 Theoretical statements  𝓓𝑿

𝒆𝟏 𝒆𝟐 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ 𝒆𝟐 𝒔𝟐 = 𝒆𝟏 ∧ 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ ¬𝒆𝟐 𝒔𝟐 = ¬𝒆𝟏 …

F F F … F F … T T …

… … … … … … … … … …

F T F … T F … F T …

T T F … T F … T F …

… … … … … … … … … …
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The experimental domain is the topology 
(i.e. each verifiable statement is an open set)



Basis 𝓑 Verifiable statements 𝓓𝑿 Theoretical statements  𝓓𝑿

𝒆𝟏 𝒆𝟐 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ 𝒆𝟐 𝒔𝟐 = 𝒆𝟏 ∧ 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ ¬𝒆𝟐 𝒔𝟐 = ¬𝒆𝟏 …

F F F … F F … T T …

… … … … … … … … … …

F T F … T F … F T …

T T F … T F … T F …

… … … … … … … … … …
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The basis of the experimental domain is a 
sub-basis of the topology



Basis 𝓑 Verifiable statements 𝓓𝑿 Theoretical statements  𝓓𝑿

𝒆𝟏 𝒆𝟐 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ 𝒆𝟐 𝒔𝟐 = 𝒆𝟏 ∧ 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ ¬𝒆𝟐 𝒔𝟐 = ¬𝒆𝟏 …

F F F … F F … T T …

… … … … … … … … … …

F T F … T F … F T …

T T F … T F … T F …

… … … … … … … … … …
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The theoretical domain is the 𝝈-algebra (i.e. 
each theoretical statement is a Borel set)



Examples

• Discrete topology means every statement is 
decidable
• All tests terminate and we can experimentally tell 

whether any statement is true or false

• Standard topology on the real numbers means we 
can experimentally measure with arbitrarily small, 
but always finite, precision

• A Hausdorff topology means that each possibility 
can be seen as a limit of a sequence of verifiable 
statements
• The statements become narrower and narrower



General results

• Every set of experimentally distinguishable objects will 
be a Kolmogorov second-countable topological space
• Each point is the finest description the experimental 

technique allows
• Each open set is a partial description that can be verified 

experimentally

• This is true no matter which branch of science, what 
experimental technique or how clever we are
• All we are doing is keeping track of the consistent truth 

assignments in that gigantic truth table

• Consequence: we cannot experimentally distinguish 
elements of sets with cardinality greater than the 
continuum



Peculiarities of this framework

• In topology the empty set is the same in all cases 
but the full set is not. In these topologies, the full 
set corresponds to the tautology, so it is the “same” 
in all cases as well.

• In topology, points and open sets are different 
objects. In these topologies they are all statements.

• In topology, first you must define the points and 
then you define the open sets. In these topologies 
you only define the open sets (i.e. the verifiable 
statements) and the points (i.e. the possibilities) 
are generated.



Conclusion

• We believe this framework successfully formalizes 
the fundamental structure for experimental 
science, shedding light as to what role 
mathematical structures, such as topologies, play

• We are working to extend this framework to other 
areas of math and science
• For example, states are possibilities of some 

experimental domain, deterministic and reversible 
evolution is equivalence between past and future 
domains which will correspond to an isomorphism in the 
category
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