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Preface

This work is part of a larger project, Assumptions of Physics (https://assumptionsofphysics.
org), that aims to identify a handful of physical principles from which the basic laws can be
rigorously derived. The aim is to give physics (and science more in general) a renewed foun-
dation that is mathematically precise, physically meaningful and philosophically consistent.
This work contains only the parts of the project that are considered to be mature enough to
meet that high standard, and therefore will be expanded as progress is being made. We give
here a brief overview of the project, which can be useful to better understand the context of
this work.

Overall goals of Assumptions of Physics

What do the basic laws of physics describe? Why is the state of a classical particle iden-
tified by position and momentum (i.e. a point on a symplectic manifold) while the state of
a quantum system is identified by a wave function (i.e. a vector in a Hilbert space)? What
assumptions are unique to each theory? What are, instead, the basic requirements that all
physical theories must satisfy? Could we have had different laws? A lack of clear answers to
these questions is, we believe, the biggest obstacle in the foundations of physics and prevents
the resolution of outstanding problems in the field. Our approach is to find a minimal set
of physical assumptions that are necessary and sufficient to derive the different
theories within a unified framework. If we are able to do so, then we are guaranteed that
all that the laws of physics say is encoded in those assumptions and we are able to answer
those questions.

We found this approach to be very fruitful. It provides new insights into physics as a whole,
the role of mathematics in physical theories and a gives a more solid conceptual foundation to
both. It becomes clear why some mathematical structures are pervasive in science and what
exactly they are meant to represent, while others will never play a role. The downside is that
we have to touch many subjects in math (logic, topological spaces, measure theory, group
theory, vector spaces, differential geometry, symplectic geometry, statistics, probability the-
ory, ...), physics (Hamiltonian mechanics, Lagrangian mechanics, thermodynamics, quantum
mechanics, electromagnetism, ...) and science in general (computer science theory, informa-
tion theory, system theory, ...). In other words, the only way to properly achieve the
goal is to rebuild everything from the ground up: formal rigor, physical significance
and conceptual integrity are not something that can be added at the end, but they must be
present from the beginning.

The main takeaway for us is that the foundations of science are one: no real progress can
be made on the foundations of one subject without making progress on the foundations of
others. What is needed is a general theory of experimental science: a theory that
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studies physical theories. This provides a standard framework that defines basic concepts
and requirements (e.g. experimental verifiability, granularity of descriptions, processes and
states) that serve as a common basis for all theories. Each theory, then, is recovered by
studying how these common objects become specialized under different assumptions. This
book aims to build over time, piece by piece, this framework.

While the topic is necessarily inter-disciplinary, this is still first and foremost a sci-
entific book. The material should be accessible to the mathematician and philosopher, but
understand that it needs to resonate first and foremost with the experimental physicist and
the engineer. The mathematical definitions and derivations are there to make the science pre-
cise, but they are not the main focus. In fact, the book is designed so that the mathematical
definitions and proofs, highlighted with a green side bar, can be skipped altogether without
loss of the big picture and the important details. Along the same line, the foundational dis-
cussions are there to articulate more precisely what it means to do science, so they will not
indulge in other questions which may be of interest to the philosopher but not to the scientist.

A living work

For the project to be successful, we need to depart from some of the norms of academic
research and academic publishing. For example, one typically develops his research program
as a series of articles published in a peer reviewed journal that caters to a specific community.
These articles are then typically collected as is or merged into a book. This does not work
for this project. As journals are specialized into sometimes very narrow fields, this would
create a set of disjoint articles that cater to different audiences, with no guarantee that they
can fit into a unified vision. For us, the overall picture, if and how the different perspectives
combine, is the most important feature. In this sense, the book comes first and the
articles are derivative works. We need to pool expertise and ideas from a wide range of
disciplines and make sure that the result makes sense from all angles.

As the goal is broad, the framework needs to evolve as new issues are solved and old ones
are better understood. If one part changes, we have to make sure that everything is updated
to keep conceptual consistency. This book, therefore, is an ongoing project. It will
continue to grow organically, adding and revising chapters. As is standard practice in open
source/free software communities, we need to “release early, release often” to gather feedback.
Each new version supersedes all prior ones and will be superseded by future ones. There is
therefore no “definitive version” in the near future as we don’t expect to “solve all of physics”
in the near future. However, the framework will tend to converge as different parts become
more settled.

The upshot is that one only needs to read the latest version of this work to be current.
That is, one does not need to read a scattered set of papers, which require previous knowledge
of a field, and follow how the ideas have changed. Just get the latest copy of the book, and
if you do find areas you can help us expand or improve, let us know!

A new standard for scientific rigor

The standard of rigor mathematicians have developed for their field is not sufficient for the
purpose of this project. Mathematics only deals with formal systems, whose starting points
are a set of definitions and rules that are taken as is. At that point, correctness of the premise
cannot be established, only self-consistency. Therefore mathematics fails to deal with the
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most delicate and interesting parts of the foundations of physics: the physical assumptions
and how they are encoded into the formal framework. We therefore need rules and standards
for rigorously handling the informal parts of the framework and, since there are no guidelines
for this, we set our own standard.

We call an axiom a proposition that brings new objects or new properties of established
objects within the formal framework. A definition, instead, is a proposition that further
characterizes objects and properties already present in the formalism. An axiom or a def-
inition is well posed only when it is clear what the objects represent physically
and what aspects are captured mathematically. Therefore each axiom and definition
is composed of two parts. The first characterizes the objects and properties within the in-
formal system, tells us what they represent physically. The second part, typically preceded
by “Formally”, characterizes the part that is captured by the formal system. Axioms and
definitions are followed by a justification when it is necessary to explain why the elements
in the informal system must be mapped into the formal system in the way proposed. Some
definitions are purely formal and as such do not require justifications. As this argument spans
both the formal and informal systems, this cannot be a mathematical proof in the modern
sense. In particular, the justification for an axiom must argue why those objects must exist.

The above standard makes sure we have a perfect identification between formal
and informal objects. All mathematical symbols correspond to physical objects and all the
relevant physical concepts are captured by the math. All subsequent propositions and proofs,
then, can be carried out in the formal system, where it is easier to check for consistency and
correctness. However, all the proofs can, if need be, be translated into the informal language
and given physical meaning.

Project overview

Here we present a summary of the whole project and the status of each part as the layout
will map to the structure of this work. As of now, the book only covers the first part of the
project (experimental verifiability) as it is the only one fully developed to the required level
of rigor. However, this has to be understood in the greater context of the work. There would
be no point in making the beginning rigorous if we did not expect to be able to use it as a
foundation for the actual physical theories.

General theory

The general mathematical theory of experimental science, or simply general theory, lays down
the basic axioms and definitions that are required for any physical theory. It provides a
“theory of scientific theories” that allows us to define and study the set of all
well-formed scientific theories. The core tenet is the principle of scientific objectivity:
“Science is universal, non-contradictory and evidence based.” This serves to define the subject
and the basic formal requirements of a scientific theory. We divide the general theory into
three main parts.

Experimental verifiability. This part defines a scientific theory as a set of statements. It
provides the basic axioms which simply characterize the rules of logic as applied to
experimentally verifiable statements. Mathematically, these requirements are captured
by topologies and σ-algebras over the space of the possible cases that can be identified
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experimentally. This part is very well developed both conceptually and mathematically,
and it is the only part currently included in this book.

Informational granularity. This part adds the ability to compare the level of description
of different statements. Mathematically, this imposes a preorder on the algebra of
statements which is intended to provide a common foundation to geometry, measure
theory, probability theory and information theory. All those structures, in fact, provide
ways to compare the size of sets of possible cases and the description provided in terms
of those sets. This part is fairly developed conceptually but not yet well developed
mathematically.

States and processes. This part defines the basic physical notions of processes, systems
and states. It serves to bring to light a series of hidden assumptions that are needed,
both physically and mathematically, to be able to talk about independent systems.
These will lead to notions of entropy, state spaces and the geometrical structures that
accompany them. This part is still being developed conceptually, though the progress
is encouraging.

Physical theories

Once the general theory is laid out, we can understand how different assumptions lead to the
different physical theories. Assumptions essentially puts constraints on the logical structures
defined above, and those constraints lead to more specialized mathematical structures, the
ones we are already familiar with. This part is already fairly developed both conceptually and
mathematically. However, it is developed in the opposite direction, by reverse engineering the
current theories. Therefore it requires the reconstruction of fairly broad parts of mathematics
to be brought to the level of rigor we envision and be included in this book.

Determinism and reversibility: “The system under study undergoes deterministic and
reversible evolution.” Mathematically, the physical properties of the system determine
which category, in the mathematical sense, is used to describe the state space and
deterministic, and reversible evolution will be an isomorphism in the category (i.e. a
bijective map that preserves the physical properties of the system). Therefore the law
of evolution is not just a bijective map, but is also a linear transformation, a differentiable
map or an isometry depending on the context.

Infinitesimal reducibility: “Knowing the state of the whole system is equivalent to know-
ing the state of all its infinitesimal parts.” For example, we can study the motion of a
ball, but we can also mark a spot in red and study the motion of the mark. Knowing
the evolution of the whole ball means knowing the evolution of any arbitrary spot and
vice-versa. Mathematically, the state of the whole will be a distribution over the state
space of the parts. It will need to be a distribution whose value is invariant under coor-
dinate transformations. The state space of the infinitesimal parts, then, comes equipped
with an invariant two-form upon which we can define such a distribution. The state
space is therefore a symplectic manifold and the deteministic and reversible evolution
is a symplectomorphism. That is, the infinitesimal parts follow classical Hamiltonian
mechanics. Proper handling of the time variable will give us a relativistic version of the
framework without extra assumptions.

Irreducibility: “Knowing the state of the whole system tells us nothing about its infinites-
imal parts.” For example, we can study the state of an electron by scattering photons
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off of it. But whenever a photon interacts with the electron, it interacts with the whole
electron. There is no way to mark a part of an electron and study it independently from
the rest. Mathematically, the state of the electron will be a distribution that evolves de-
terministically where the motion of each infinitesimal part evolves randomly. A complex
vector space will be the appropriate tool to keep track of the internal chaotic motion
leading to quantum mechanics.

Kinematic equivalence: “Knowing the state of the system is equivalent to knowing its tra-
jectory and vice-versa.” This means that we will have to be able to transfer a distribution
over state variables (i.e. position and momentum) into a distribution over kinematic vari-
ables (i.e. position and velocity). Mathematically, the symplectic two-form will induce
a symmetric tensor over the tangent space for position. This will give us a metric and
will also allow us to reformulate the laws of motion according to Lagrangian mechanics.
Because the transformation is linear, we are able to constrain the Hamiltonian to the
one for massive particles under scalar and vector potential forces.

Current plan and status

We usually proceed concurrently in two opposite directions. The bottom-up approach extends
the precise formalization of the core framework. Currently, the goal is to work on informa-
tional granularity trying to characterize how the notion of finer descriptions puts a preorder
on the algebra of statements that, in some conditions, leads to measure theory. The top-
down approach takes physical theories and tries to extend the framework to accommodate
them. Currently, the goal is to work on non-deterministic and non-reversible processes and
understand how thermodynamics and statistical mechanics can be recovered.

Changelog

2018/06/22: Ver 0.1 - Consolidated first two chapters that lay the foundation for the general
theory.

2019/02/22: Ver 0.2 - Consolidated third chaper on properties, quantities and ordering.
2019/07/07: Ver 0.3 - Reviewed first two chapters to clarify the idea of possible assignments

and how contexts for function spaces are constructed.
2021/03/08: Ver 1.0 - Updated the first three chapters with minor changes: renamed tau-

tology to certainty and contradiction to impossibility as they characterize better their
role in the framework; made more formal justifications for the basic axioms and some
of the basic definitions; causal relationships are now proved to be continuous instead of
assumed to be continuous. Added Part II to include the results that are not yet fully
formalized, to give a sense of the future scope of the work.
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Chapter 1

Verifiable statements and
experimental domains

In this chapter we lay the foundations for our general mathematical theory of experimental
science: a formalism that is broad enough to be applied to any area of scientific investigation.
It is based on the idea of verifiable statements, assertions that are either true or false
and that can be validated experimentally. Whether it is physics or chemistry, economics or
psychology, medicine or biology, the goal is always to find some objective truth about the
natural world that is supported by experimental data.

We group verifiable statements into experimental domains which represent the list
of all possible testable answers to a particular scientific question. From those, we define
theoretical domains which add those statements that, though not directly testable, can
be used to describe predictions. Within each theoretical domain, we find those particular
statements that, if true, predict the truthfulness or falsehood of all other statements. We
call these the possibilities of the domain as they identify the complete descriptions that are
admissible. To answer a scientific question, then, is to find which possibility is consistent with
experimental data: the one that correctly predicts the result of all experimental tests.

We’ll see how the above organization always exists on any given set of verifiable statements.
That is, it is a fundamental structure for all sciences. We’ll also see that these concepts
are deeply intertwined with fundamental mathematical tools: experimental domains map
to topologies while theoretical domains map to σ-algebras. These two core mathematical
structures provide the foundation for differential geometry, Lie algebras, measure theory,
probability theory and other mathematical branches that are heavily used in physics and
other sciences.

As a consequence of this connection, we can build a more precise, intuitive and insightful
understanding of what these mathematical structures are meant to represent in the scientific
world. It also reveals why these mathematical tools are so pervasive and successful in science.

1.1 Statements

Statements, like “the mass of the electron is 511 ± 0.5 keV” or “that animal is a cat”, will be
the cornerstone of our general mathematical theory of experimental science. In this section
we will outline the basic definitions that allow us to combine statements into other statements
(e.g. “that animal is black” and “that animal a cat” gives “that animal is a black cat”) and

3
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to compare their content (e.g. “the mass of the electron is 511 ± 0.5 keV” and “the mass of
the electron is 0.511 ± 0.0005 MeV” are equivalent).

We will start from a somewhat different starting point than what is customary in order
to address a few issues. The first is that we need to develop a formal framework to handle
the relationship of statements that are not themselves formally defined.1 The second issue
is that the truth values in our context are in general found experimentally, not through
deduction. The role of the logic framework is to keep track of the consistency between the
possible hypothetical cases. That is, we need relationships that capture the idea of causal
relationship, that one is true because the other is true, and not merely by coincidence.2 We
remind the reader that the mathematical sections, highlighted with a green bar on the side,
can be skipped without loss of conceptual understanding in case one is not interested in all
the details.

As a starting point, we need to define what science is: the systematic study of the physical
world through observation and experimentation. We therefore introduce the principle of
scientific objectivity that will guide us throughout this work. This states that science is
universal, non-contradictory and evidence based.

Principle of scientific objectivity. Science is universal, non-contradictory and evidence
based.

Consider assertions like “jazz is marvelous” or “green and red go well together”. These are
not objective: there is no agreed upon definition or procedure for what constitutes marvelous
music or good color combination. Because of their nature, they can’t be the subject of
scientific inquiry. This does not mean that marvelous music or good color combinations do
not exist or are not worth studying.3 What the principle tells us is simply that if we choose to
do science, we are limiting ourselves to those assertions that are either true or false (i.e. non-
contradictory) for everybody (i.e. universal): assertions that have a single truth value. We
call these assertions statements: they are the basic building blocks of a scientific description
as only these can be studied scientifically.

Logical consistency, though, is not just a property of individual statements. Consider the
following two sentences:

“the next sentence is true”
“the previous sentence is false”

Each assertion, by itself, would be fine but their combination makes it impossible to assign
truth values to both in a way that is logically consistent. For this reason we group statements
into logical contexts, sets of statements for which it is possible to assign truth values to all in
a way that is logically consistent.

Definition 1.1. The Boolean domain is the set B = {false,true} of all possible truth
values.

1This is the main reason we cannot simply use the tools of mathematical logic.
2In contrast, in standard logic “the moon is a satellite of earth” implies “5 is prime”.
3In fact, one can argue that most of the things that make life worth living (e.g. love, friendship, arts,

purpose and so on) defy objective characterization and, therefore, that science gives us certain truth about
trifling matters.
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Axiom 1.2 (Axiom of context). A statement s is an assertion that is either true or false.
A logical context S is a collection of statements with well defined logical relationships.
Formally, a logical context S is a collection of elements called statements upon which is
defined a function truth ∶ S → B.

Justification. As science is universal and non-contradictory, it must deal with assertions
that have clear meaning, well-defined logical relationships and are associated with a unique
truth value. A priori, we only assume these objects exist, simply because we cannot proceed
if we do not. A posteriori, we see that a particular set of statements works in practice, which
shows that science could indeed be done with those statements. We are therefore justified
to assume the existence of sets of assertions that have the aforementioned properties. We
call a logical context such a group of assertions and we represent it formally as a set S.
We call statement each assertion within a logical context and represent it formally with an
element s. We say s ∈ S if the statement s belongs to the logical context S.

Given a context, we are also justified to assume the existence of a function truth ∶ S → B
such that truth(s) = true for all s ∈ S that are true for everybody and truth(s) = false for
all s ∈ S that are false for everybody. In fact, note that no s ∈ S can be both true and false
for everybody as it would be contradictory. Note that no s ∈ S can be both true for some
and false for others as it would not be universal. Note that no s ∈ S can be neither true
nor false for everybody. Suppose it were. Then its truth can never be, even potentially,
settled with experimental evidence. Therefore either truth(s) = true or truth(s) = false
for all s ∈ S.

Note that the statement is the concept asserted, not the words used to express the
concept. A sentence in a particular language is neither necessary nor sufficient to define
a statement. Consider the English language and take the sentence “Snoopy is a dog”.
The truth will depend on whether or not a fictional character qualifies as a dog. The
sentence, by itself, is not enough to determine the truth value. Conversely, take the idea
that a particular animal is a dog. We can express the concept in Italian as “quell’animale
è un cane” without using an English sentence. Therefore English sentences are neither
necessary nor sufficient to express a statement. This will be true of any other language.
Therefore, the basic notion of statement is considered prime, independent of its expression.
Moreover, all statements are considered equally prime.

Also note that logical consistency is not a property of an individual statement but rather
of a set of statements. Consider the two statements: “the next sentence is true” and “the
previous sentence is false”. The two statements together are not logically consistent as
assuming one to be true leads to a proof for it to be false and vice-versa. If we changed
the latter statement to “the previous sentence is true” then both statements would be true
and logically consistent. Therefore logical consistency is defined on the logical context, and
each statement has to be defined as belonging to a context.

Finally, note that the existence of a truth function on the context imposes logical con-
sistency on the logical context without worrying about the details of how this is achieved.

The idea of statements has their origin in the philosophical tradition of classical logic,
“Socrates is a man” being a classic example. Any language can be used to form them,
formal or natural, as indeed any language is used in practice. This means we are not going
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to care what particular syntax (i.e. symbols and grammar rules) is used.4 In fact, even a
grammatically incorrect statement is fine as long as the intent is clear. On the other hand,
we are going to care about the semantics of the statements (i.e. their content and meaning).
Therefore we will consider “Socrates is a man” and “Socrate e’ un uomo” to be the same
statement because they provide the same assertion but in different languages.

Moreover, when we say “Socrates is a man” it has to be clear who is Socrates and what
a man is. If it weren’t, we would have no idea what to experimentally test and how. This is
also important because the mere content of a set of statements puts constraints on what can
be found to be true or false. Consider the statement “that cat is a swan”. There is nothing
to experimentally test here: based on the definitions of cat and swan we know the statement
can never be true, no matter what particular cat we are considering. The statement provides
no new information. Consider, instead, the statements “that animal is a mammal” and “that
animal is a bird”. Based on the content, each of the statements can be found true or false
separately, but they can’t be found true together simply by how mammals and birds are
defined.

We want each logical context to keep track not only of the truth value of each statement,
but also of which truth combinations are possible merely because of the content. Given a
logical context S we will call an assignment for S a map a ∶ S → B that for each statement
gives a truth value. For example, consider the following table:

“that animal is a cat” “that animal is a mammal” “that animal is a bird” ...

T T T ...
T T F ...
F F T ...
F T F ...

Each line represents an assignment for all statements, each represented by a column. The set
of all assignments is the set of all functions from S to B, which in set theory notation is BS ,
and corresponds to all possible permutations. Some assignments, like the one in the first line,
are not consistent with the content of the statements. We will call possible the ones that are
allowed and impossible the ones that aren’t. Naturally, the truth must be one of the possible
assignments. As the context itself needs to tell us which assignments are possible, we can
imagine it comes equipped with the set AS ⊆ BS of all possible assignments for that context.5

Some statements may be allowed to either be true or false while others may only be
allowed one option. We will call certainty a statement that can only be true, like “that cat is
an animal”. We will call impossibility a statement that can only be false, like “that cat is a

4In general, statements in this context are not necessarily well formed formulas, predicates or similar
concepts in the context of mathematical or propositional logic. Scientific investigation in the broad sense of
learning from experimentation predates math and formal languages: information about agriculture, astronomy,
metallurgy, botany and the like were collected and used even before the written word. Moreover, cognitive
scientists have shown that children start using deliberate experimentation at a very young age to understand
the world around them, even before their speech is fully developed. Ultimately, that knowledge is encoded
in the language of electrical and biochemical signals. Formal languages are indeed extremely helpful in that
they allow us to be more precise and to better keep track of possible inconsistencies, but ultimately one always
needs natural language to give meaning and context to the mathematical symbols.

5In the same way that we do not try to capture how statements are constructed, we are not going to
capture how logical consistency is established. We just assume a mechanism is available and therefore one can
check whether an assignment is possible or not.
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swan”. We will call a contingent statement one that can be either true or false as its truth is
contingent on the assignment, like “that animal is a cat”.

Note that the semantics, the meaning of the statements, plays an important role in defining
the possible assignments but, in general, does not define the truth values.6 For example, even
if the meaning of “the next race is going to be won by Secretariat” is clear, and so is its logical
relationship to “the next race is going to be lost by Secretariat”, we may be none the wiser
about its truthfulness.

Definition 1.3. Given a set of statements, an assignment associates a truth value with
each statement. Formally, an assignment for a logical context S is a map a ∶ S → B, an
element of BS . An assignment for a set of statements S ⊆ S is a map a ∶ S → B while an
assignment for a statement s ∈ S is a truth value t ∈ B.

Justification. Given that an assignment for a set S ⊆ S associates a truth value to each
statement, it is identified by a map a ∶ S → B. The assignment for a single statement is
given by a single truth value t ∈ B.

Axiom 1.4 (Axiom of possibility). A possible assignment for a logical context S is a
map a ∶ S → B that assigns a truth value to each statement in a way consistent with the
content of the statements. Formally, each logical context comes equipped with a set AS ⊆ BS
such that truth ∈ AS . A map a ∶ S → B is a possible assignment for S if a ∈ AS .

Justification. The meaning associated to each statement in the context may prevent
some assignments from being logically consistent. Consider, for example, the statements
“that animal is a cat” and “that animal is a dog”. Given that an animal cannot be both
a cat and a dog, an assignment that associated true to both statements would not be
logically consistent. Given that the context must give clear meaning to all statements, it
must be able to clarify whether an assignment a ∈ BS is consistent with the meaning of all
statements. We call these possible assignments.

For each logical context, then, we are justified to assume the existence of a set AS ⊆ BS
such that a ∈ AS if and only if a is a possible assignment.

Definition 1.5. Let S ⊆ S be a set of statements. Then a ∶ S → B is a possible assignment
for S if there exists ā ∈ AS such that ā(s) = a(s) for all s ∈ S. Let s ∈ S be a statement.
Then t ∈ B is a possible assignment for s if there exists ā ∈ AS such that ā(s) = t.

Justification. Let S ∈ S be a set of statements. If a ∶ S → B is a possible assignment
then there must be a way to assign the remaining statements in the domain in a way that
is logically consistent. Therefore there must be an ā ∈ AS such that ā(s) = a(s) for all s ∈ S.
Similarly, t ∈ B is a possible assignment for s if there exists ā ∈ AS such that ā(s) = t. This
justifies the definition.

Definition 1.6. Statements are categorized based on their possible assignments.

� A certain statement, or certainty, is a statement ⊺ that must be true simply because
of its content. Formally, a(⊺) = true for all possible assignments a ∈ AS .

6In other formalisms the semantics is said to define the truth values, not in ours.
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� An impossible statement, or impossibility, is a statement � that must be false simply
because of its content. Formally, a(�) = false for all possible assignments a ∈ AS .

� A statement is contingent if it is neither certain nor impossible.

Justification. Since a certainty must be true, no possible assignment can assign it to
be false. Therefore a(⊺) = true for all a ∈ AS . Similarly, an impossibility must be false
and no possible assignment can assign it to be true. Therefore a(�) = false for all a ∈ AS .
This justifies the definitions.

Corollary 1.7. A statement s ∈ S can only be exactly one of the following: impossible,
contingent, certain.

Proof. Let s ∈ S be a statement. If it is contingent, by definition, it is neither certain
nor impossible. If it is not contingent, it is either certain or impossible. If s is certain, then
a(s) = true for all possible assignments a ∈ AS . This means a(s) ≠ false for all possible
assignments a ∈ AS and therefore s is not impossible. If s is impossible, then a(s) = false
for all possible assignments a ∈ AS . This means a(s) ≠ true for all possible assignments
a ∈ AS and therefore s is not certain.

Next we want to keep track of statements whose truth depends on the truth of other
statements. Consider “that animal is a cat” and “that animal is not a cat”: if the first one
is true then the second is false and vice-versa. In this sense, the second statement depends
on the first. Therefore, in general, a statement depends on other statements if its truth is
determined by the truth values of the other statements in every possible assignment.

Since statements are intangible, there are no limits to the number of arguments one state-
ment may depend on. For example, consider the statement “the mass of the electron is 511±0.5
keV” and the set of all the statements of the form “the mass of the electron is exactly x keV”
with 510.5 < x < 511.5. If any of the latter is true then the original statement is true as well.
Given that x is a real number, that is uncountably many statements so the original statement
can be seen as a function of uncountably many statements. Therefore we will assume we can
always create a statement that arbitrarily depends on an arbitrary set of statements.

Definition 1.8. Let s̄ ∈ S be a statement and S ⊆ S be a set of statements. Then s̄ depends
on S (or it is a function of S) if we can find an fB ∶ BS → B such that

a(s̄) = fB({a(s)}s∈S)

for every possible assignment a ∈ AS . We say s̄ depends on S through fB.

Axiom 1.9 (Axiom of closure). We can always find a statement whose truth value arbi-
trarily depends on an arbitrary set of statements. Formally, let S ⊆ S be a set of statements
and fB ∶ BS → B an arbitrary function from an assignment of S to a truth value. Then we
can always find a statement s̄ ∈ S that depends on S through fB.

Justification. Let S ⊆ S be a set of statements and let fB ∶ BS → B be an arbitrary
function. Consider the statement “this statement is true if the function fB applied to the
truth values of S is true”. This statement has a well defined meaning that assigns a truth
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value that is the same for everybody. It is therefore logically consistent with all other
statements in S. We are therefore justified to assume it is in the context, for, if it is not,
it can be added without problem.

Corollary 1.10. Functions on truth values induce functions on statements. Formally, let
I be an index set and fB ∶ BI → B be a function. There exists a function f ∶ SI → S such
that

a(f({si}i∈I)) = fB({a(si)}i∈I)

for every indexed set {si}i∈I ⊆ S and possible assignment a ∈ AS .

Proof. Given I and fB ∶ BI → B we can construct f ∶ SI → S as follows. Given an
indexed set {si}i∈I ∈ SI , let S ⊆ S be the set of elements in the indexed set and define
f̄B ∶ BS → B such that f̄B({a(s)}s∈S) = fB({a(si)}i∈I). Then by axiom 1.9 we can find
a statement s̄ that depends on S through f̄B and we can set f({si}i∈I) = s̄. We have
a(f({si}i∈I)) = fB({a(si)}i∈I) for all indexed sets and for all possible assignments.

To better characterize truth functions, we borrow ideas and definitions from Boolean
algebra which is the branch of algebra that operates on truth values. Boolean algebra is fun-
damental in logic and computer science, since every digital circuit ultimately is implemented
on two-state systems (e.g. high/low voltage, up/down magnetization). The most fundamen-
tal elements in that algebra are the following three simple operations: negation (i.e. logical
NOT), conjunction (i.e. logical AND) and disjunction (i.e. logical OR).

Suppose s1 = “the sauce is sweet” and s2 = “the sauce is sour”. We can apply the three
operations to make this table:

Operator Gate Symbol Example

Negation NOT ¬s1 “the sauce is not sweet”
Conjunction AND s1 ∧ s2 “the sauce is sweet and sour”
Disjunction OR s1 ∨ s2 “the sauce is at least sweet or sour”

Table 1.1: Boolean operations on statements.

Most languages, natural or symbolic, typically already provide similar operations, as the
examples show. Technically, though, we should consider the ones defined here as meta-
operations that are defined outside the language of the statements. For example, “x is the
position of a ball”∧“ d2x

dt2
= −g” stitches together an English statement with a calculus state-

ment into a new statement that is neither. This kind of mix should be allowed as it does
happen in practice.

Definition 1.11. The negation or logical NOT is the function ¬ ∶ B → B that takes a
truth value and returns its opposite. That is: ¬true = false and ¬false = true. We
also call negation ¬ ∶ S → S the related function on statements.

Definition 1.12. The conjunction or logical AND is the function ∧ ∶ B × B → B
that returns true only if all the arguments are true. That is: true ∧ true = true
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and true ∧ false = false ∧ true = false ∧ false = false. We also call conjunction
∧ ∶ S × S → S the related function on statements.

Definition 1.13. The disjunction or logical OR is the function ∨ ∶ B × B → B that
returns false only if all the arguments are false. That is: false ∨ false = false and
true∨false = false∨true = true∨true = true. We also call disjunction ∨ ∶ S ×S → S
the related function on statements.

Proposition 1.14. A logical context S is closed under negation, arbitrary conjunction and
arbitrary disjunction.

Proof. Negation, arbitrary conjunction and arbitrary disjunction are particular truth
functions. Their output always exists by axiom (1.9).

Now we have all the elements to define when two statements have the same logical content.
Consider the two statements “that animal is a bird” and “that animal has feathers”: since
all birds and only birds have feathers they give us the same information. Consider “the mass
of the electron is 511 ± 0.5 keV” and “the mass of the electron is 0.511 ± 0.0005 MeV”: they
represent the same measurement but in different units. So, how can we express the fact that
two statements s1 and s2 give us the same information? The idea is that they can never be
assigned opposite truth values. If we assigned true to the first, then the second must be true
as well. If we assigned false to the first, then the second must be false.7

Definition 1.15. Two statements s1 and s2 are equivalent s1 ≡ s2 if they must be equally
true or false simply because of their content. Formally, s1 ≡ s2 if and only if a(s1) = a(s2)
for all possible assignments a ∈ AS .

Justification. If two statements must be equally true or false simply because of their
content, then their value must be the same in all possible assignments, which justifies the
definition.

Again, we want to stress that this notion of equivalence is not based on the truth value
(i.e. whether the statements happen to be both true or false) or on whether they are the same
statement (i.e. whether they assert the same thing): it is based on the possible assignment
(i.e. whether there exists a possible assignment in which the two statements have a different
truth value) and therefore on the content of the statements. We sum up the difference in the
following table.

Note that the relationships in the table are ordered by strength: if two statements are
equal, they are also equivalent; if two statements are equivalent, they have equal truth. The
reverse is not true in general: two statements with equal truth may not be equivalent; two
equivalent statements may not be equal.

Intuitively, statement equivalence answers the question: do these two statements carry
the same information? Is experimentally testing the first the same as experimentally testing
the second? If that’s the case, they are essentially equivalent to us. So much so, that from

7This technique allows us to do something analogous to model theory. Two statements are equivalent if
their truth is equal for all consistent truth assignments, which in our framework play the part of the models
of model theory. But in our context the assignments are only hypothetical: there isn’t a model in which “this
is a cat” and another in which “this is a dog”. There is only one truth value, the one we find experimentally.
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Also
Relationship Symbol First statement Second statement known as

Statement s1 = s2 “Swans are birds” “I cigni sono uccelli” Semantic
equality equivalence
Statement s1 ≡ s2 “Swans are birds” “Swans have feathers” Logical
equivalence equivalence
Truth truth(s1) = truth(s2) “Swans are birds” “The earth is round” Material
equality equivalence

Table 1.2: Different types of statement relationships.

now on we will implicitly assume two different statements to be inequivalent.8

There are a number of useful properties that statement equivalence satisfies.

Corollary 1.16. All certainties are equivalent. All impossibilities are equivalent.
Proof. Let ⊺1,⊺2 ∈ S be two certainties. Then for every possible assignment a ∈ AS we

have a(⊺1) = true = a(⊺2) and therefore ⊺1 ≡ ⊺2 by definition.
Let �1,�2 ∈ S be two impossibilities. Then for every possible assignment a ∈ AS we

have a(�1) = false = a(�2) and therefore �1 ≡ �2 by definition.

Corollary 1.17. Two statements s1 and s2 are equivalent if and only if (s1 ∧ s2) ∨ (¬s1 ∧
¬s2) ≡ ⊺.

Proof. Let a ∈ AS and s = (s1 ∧ s2) ∨ (¬s1 ∧ ¬s2). We have a(s) = (a(s1) ∧ a(s2)) ∨
(¬a(s1) ∧ ¬a(s2)). We have the following truth table

s1 s2 s

T T T
T F F
F T F
F F T

Note that the assignments for which a(s1) = a(s2) are exactly the assignments for which
a(s) = true. Therefore s1 ≡ s2 if and only if s is a certainty.

Corollary 1.18. Statement equivalence satisfies the following properties:

� reflexivity: s ≡ s
� symmetry: if s1 ≡ s2 then s2 ≡ s1
� transitivity: if s1 ≡ s2 and s2 ≡ s3 then s1 ≡ s3

and is therefore an equivalence relationship.

8Technically, when we’ll say that s is a statement we actually mean s is an equivalence class of statements.
We are not going to be explicit about the distinction, though, as we feel it simply distracts without adding
greater clarity. We’ll let the context determine what is meant.
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Proof. Statement equivalence is defined in terms of truth equality within all possible
assignments and will inherit reflexivity, symmetry and transitivity from it.

Corollary 1.19. A logical context S satisfies the following properties:

� associativity: a ∨ (b ∨ c) ≡ (a ∨ b) ∨ c, a ∧ (b ∧ c) ≡ (a ∧ b) ∧ c
� commutativity: a ∨ b ≡ b ∨ a, a ∧ b ≡ b ∧ a
� absorption: a ∨ (a ∧ b) ≡ a, a ∧ (a ∨ b) ≡ a
� identity: a ∨ � ≡ a, a ∧ ⊺ ≡ a
� distributivity: a ∨ (b ∧ c) ≡ (a ∨ b) ∧ (a ∨ c), a ∧ (b ∨ c) ≡ (a ∧ b) ∨ (a ∧ c)
� complements: a ∨ ¬a ≡ ⊺, a ∧ ¬a ≡ �
� De Morgan: ¬a ∨ ¬b ≡ ¬(a ∧ b), ¬a ∧ ¬b ≡ ¬(a ∨ b)

Therefore S is a Boolean algebra by definition.

Proof. The left and right expressions for each equivalence correspond to the same truth
function applied to the same statements. Therefore, the left side is true if and only if the
right side is true and they are therefore equivalent by definition.

These operations and properties define the algebra of statements. While we started
from a slightly different premise, the relationships we found are the logical identities of classical
logic. These are exactly what we need to make sure the truth values of all our statements are
consistent.

Equivalence is not the only semantic relationship that we want to capture. Consider the
contents of the following:

s1 =“that animal is a cat”
s2 =“that animal is a mammal”
s3 =“that animal is a dog”
s4 =“that animal is black”

The second will be true whenever the first is true. In this case we say the first statement is
narrower than the second (s1 ≼ s2) because “that animal is a cat” is more specific than “that
animal is a mammal”. The third will be false whenever the first is true. In this case we say
that they are incompatible (s1 � s3) because “that animal is a dog” and “that animal is a cat”
can never be true at the same time. The fourth will be true or false regardless of whether
the first is true. In this case we say that they are independent (s1 á s4) because knowing
whether “that animal is a cat” tells us nothing about whether “that animal is black”. As for
equivalence, we can define these relationships upon the previous definitions.

Definition 1.20. Given two statements s1 and s2, we say that:

� s1 is narrower than s2 (noted s1 ≼ s2) if s2 is true whenever s1 is true simply
because of their content. That is, for all a ∈ AS if a(s1) = true then a(s2) = true.

� s1 is broader than s2 (noted s1 ≽ s2) if s2 ≼ s1.
� s1 is compatible to s2 (noted s1 � s2) if their content allows them to be true at the

same time. That is, there exists a ∈ AS such that a(s1) = a(s2) = true.
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The negation of these properties will be noted by ⋠, ⋡ , � respectively.

Definition 1.21. The elements of a set of statements S ⊆ S are said to be independent
(noted s1 á s2 for a set of two) if the assignment of any subset of statements does not
depend on the assignment of the others. That is, a set of statements S ⊆ S is independent
if given a family {ts}s∈S such that each ts ∈ B is a possible assignment for the respective s
we can always find a ∈ AS such that a(s) = ts for all s ∈ S.

Proposition 1.22. The above operations obey the following relationships:

(i) s1 ≼ s2 if and only if s1 ∧ ¬s2 ≡ �
(ii) s1 ≼ s2 if and only if s1 ∧ s2 ≡ s1

(iii) s1 ≼ s2 if and only if s1 ∨ s2 ≡ s2
(iv) s1 � s2 if and only if s1 ∧ s2 ≢ �
(v) s1 � s2 if and only if s1 ∧ ¬s2 ≡ s1

(vi) s1 ≼ s1 ∨ s2
(vii) s1 ∧ s2 ≼ s1

(viii) s1 ≼ s2 if and only if ¬s1 ∨ s2 ≡ ⊺

Proof. For (i), consider the following truth table

s1 s2 s1 ∧ ¬s2
T T F
T F T
F T F
F F F

The assignment for which a(s1) = true and a(s2) = false is exactly the assignment for
which a(s1 ∧ ¬s2) = true. Therefore s1 ≼ s2 if and only if s1 ∧ ¬s2 is impossible.

For (ii), consider s1 ∧ s2 ≡ s1 ∧ s2 ∨ �. Since s1 ≼ s2, s1 ∧ ¬s2 ≡ �. We have s1 ∧ s2 ∨ � ≡
(s1 ∧ s2) ∨ (s1 ∧¬s2) ≡ s1 ∧ (s2 ∨¬s2) ≡ s1 ∧⊺ ≡ s1. Therefore s1 ∧ s2 ≡ s1. The same logic can
be applied in reverse.

For (iii), consider s1 ∨ s2 ≡ s1 ∨ s2 ∧⊺ ≡ (s1 ∨ s2)∧(¬s2 ∨ s2) ≡ (s1 ∧¬s2)∨ s2. Since s1 ≼ s2,
s1 ∧¬s2 ≡ �. We have (s1 ∧¬s2) ∨ s2 ≡ �∨ s2 ≡ s2. Therefore s1 ∧ s2 ≡ s2. The same logic can
be applied in reverse.

For (iv), consider the following truth table

s1 s2 s1 ∧ s2
T T T
T F F
F T F
F F F

The assignment for which a(s1) = a(s2) = true is exactly the assignment for which a(s1 ∧
s2) = true. Therefore s1 � s2 if and only if s1 ∧ s2 is not impossible.
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For (v), consider s1 ∧ ¬s2 ≡ s1 ∧ ¬s2 ∨ �. Since s1 � s2, s1 ∧ s2 ≡ �. We have s1 ∧ ¬s2 ∨ � ≡
(s1 ∧ ¬s2) ∨ (s1 ∧ s2) ≡ s1 ∧ (¬s2 ∨ s2) ≡ s1 ∧ ⊺ ≡ s1. Therefore s1 ∧ ¬s2 ≡ s1. The same logic
can be applied in reverse.

For (vi), we have s1 ∧ ¬(s1 ∨ s2) ≡ s1 ∧ ¬s1 ∧ ¬s2 ≡ � ∧ ¬s2 ≡ �. Therefore s1 ≼ s1 ∨ s2.
For (vii), we have s1 ∧ s2 ∧ ¬s1 ≡ s1 ∧ ¬s1 ∧ s2 ≡ � ∧ s2 ≡ �. Therefore s1 ∧ s2 ≼ s1.
For (viii), suppose s1 ≼ s2. We have ¬s1 ∨ s2 ≡ ¬s1 ∨ (s1 ∨ s2) ≡ (¬s1 ∨ s1) ∨ s2 ≡ ⊺∨ s2 ≡ ⊺.

Conversely, suppose ¬s1 ∨ s2 ≡ ⊺. We have s1 ∨ s2 ≡ s1 ∨ s2 ∨ ⊺ ≡ s1 ∨ s2 ∨ (¬s1 ∨ s2) ≡
(s1 ∨ ¬s1) ∨ s2 ≡ ⊺ ∨ s2 ≡ s2 and therefore s1 ≼ s2.

Proposition 1.23. Statement narrowness satisfies the following properties:

� reflexivity: s ≼ s
� antisymmetry: if s1 ≼ s2 and s2 ≼ s1 then s1 ≡ s2
� transitivity: if s1 ≼ s2 and s2 ≼ s3 then s1 ≼ s3

and is therefore a partial order.

Proof. For reflexivity, s ∧ ¬s ≡ � and therefore s ≼ s by 1.22.
For antisymmetry, s1 ∧ s2 ≡ s1 since s1 ≼ s2 and s1 ∧ s2 ≡ s2 since s2 ≼ s1. Therefore

s1 ≡ s2. Conversely, suppose s1 ≡ s2. Then s1 ∧ s2 ≡ s1 ≡ s2. Therefore s1 ≼ s2 and s1 ≽ s2.
For transitivity, we have s1 ≡ s1 ∧ s2 ≡ s1 ∧ s2 ∧ s3 ≡ s1 ∧ s3 and therefore s1 ≼ s3.

Proposition 1.24. Every subset S ⊆ S of statements has a supremum. That is, there
exists an element s̄ ∈ S such that s ≼ s̄ for all s ∈ S. This, by definition, means the S is a
complete Boolean algebra and, as a consequence, that the distributivity and De Morgan
laws in 1.19 hold in the infinite case.

Proof. Let S ⊆ S be an arbitrary set of statements. Consider s̄ = ⋁
e∈S

e. This statement

exists by 1.9. Let s ∈ S. Using the properties in 1.19 we have s ∨ s̄ ≡ s ∨ ( ⋁
e∈S

e) ≡ s ∨ s ∨

( ⋁
e∈(S∖{s})

e) ≡ s∨ ( ⋁
e∈(S∖{s})

e) ≡ ⋁
e∈S

e = s̄. By 1.22 we have s ≼ s̄ for any s ∈ S. Therefore any

S ⊆ S admits a supremum s̄.
A complete Boolean algebra is one such that every subset admits a supremum, there-

fore the algebra of statements is complete by definition. For a complete Boolean algebra
infinite distributivity and De Morgan laws hold, therefore they will hold in the algebra of
statements as well.

It should be noted that statement narrowness captures more than just the idea of one
statement being more specific than another. Consider “this harp seal is white” and “this harp
seal is less than one year old”. Since harp seals have white fur only for their first month,
the first one can never be true while the second is not. Therefore “this harp seal is white”
≼ “this harp seal is less than one year old”. By the same token, we also have “I lighted the
fuse” ≼ “the bomb will go off”. That is, narrowness can also capture causal relationships,
which is essential if we want to develop a basic theory of scientific investigation.9 Intuitively,

9We considered using the term implication directly, but it seems that it leads to confusion. Implication in
classical logic is something different: it is simply another truth function. Moreover, saying that an impossi-
bility is narrower than all other statements sounds better than saying that an impossibility implies all other
statements.
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a statement is narrower than another if it provides at least as much or more information when
true. If we experimentally verified the narrower statement, then we already know that the
broader one is also verified.

It should also be noted that independence is not transitive and pair-wise independence is
not sufficient. Consider the following statements for an ideal gas:

1. “the pressure is 101 ± 1 kPa”
2. “the volume is 1 ± 0.1 m3”
3. “the temperature is 293 ± 1 Kelvin”

Since the three quantities are linked by the equation of state PV = nRT , any two statements
are independent but the three together aren’t. This notion of independence is similar, and in
fact related, to statistical independence and linear independence.

We finish this section by showing how every logical dependence among statements can be
naturally expressed in terms of negation, conjunction and disjunction. Consider the statement
s =“the sauce is sweet and sour or it is neither”. This depends on the two statements s1 =“the
sauce is sweet” and s2 =“the sauce is sour” defined before: if we know whether s1 and
s2 are true, we can tell whether s is true as well. The idea is that we can express the
dependence as all possible assignments for {s1, s2} that make the result true. For example,
s will be true if the sauce is sweet and sour or if it is not sweet and not sour. That is:
(s1 ∧ s2) ∨ (¬s1 ∧ ¬s2). Similarly, the statement “the sauce is not sweet-and-sour” can be
expressed as (s1 ∧ ¬s2) ∨ (¬s1 ∧ s2) ∨ (¬s1 ∧ ¬s2) since it is going to be true in all cases except
the one where the sauce is sweet and sour.

Each of the cases is the conjunction of all independent statements where each one appears
only once, negated or not. We call these expressions minterms. A function can always be
expressed as the disjunction of all the minterms for which the function is true. This is called
its disjunctive normal form because it is a canonical way to express the function in terms of
disjunctions.

Definition 1.25. Let S ⊆ S be a set of statements. A minterm of S is a conjunction
where each element appears once and only once, either negated or not. That is, it is a
statement m ∈ S that can be written as m ≡ ⋀

s∈S
(¬)a(s) s where a ∶ S → B, ¬true s = s and

¬false s = ¬s. In this notation, in a given a0 ∈ BS we have a0(m) = true if and only if
a0(s) = a(s) for all s ∈ S.

Proposition 1.26. Let s̄ ∈ S be a statement that depends on a set of statements S ⊆
S through fB ∶ BS → B. Then we can express s̄ in its disjunctive normal form as

a disjuction of minterms of S, that is s̄ ≡ ⋁
a∈A

( ⋀
s∈S

(¬)a(s) s) where A ⊆ BS is a set of

assignments for S. In this notation, in a given a0 ∈ BS we have a0(s̄) = true if and only
if there is an a ∈ A such that a0(s) = a(s) for all s ∈ S.

Proof. We first show that this can be done for a function fB that returns true for
only one assignment. Let a ∶ S → B be an assignment for S and suppose fB ∶ BS → B is
such that fB(ā) = true if and only if ā = a. Now consider the minterm ma = ⋀

s∈S
(¬)a(s) s
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and an assignment ā ∶ S → B for the whole context. We have that ā(ma) = true if and
only if ā(s) = a(s) for all s ∈ S. Then ā(s̄) = ā(ma) for all possible assignments ā ∈ AS and
therefore s̄ ≡ ⋀

s∈S
(¬)a(s) s.

Now we generalize the result for arbitrary functions. Let fB ∶ BS → B be a generic
function. Let A = {a ∈ BS ∣ fB(a) = true}. Let ma = ⋀

s∈S
(¬)a(s) s be the minterm associated

with an assignment a ∈ A. Consider m̄ = ⋁
a∈A

ma and an assignment ā ∶ S → B for the

whole context. We have that ā(m̄) = true if and only if ā(s) = a(s) for some a ∈ A
and for all s ∈ S. Then ā(s̄) = ā(m̄) for all possible assignments ā ∈ AS and therefore

s̄ ≡ ⋁
a∈A

( ⋀
s∈S

(¬)a(s) s)

With these tools in place we are in a position to formulate models that are universal
and non-contradictory. These models will be a collection of statements with a well defined
content and well defined possible cases. Each statement’s truth value will be discovered
experimentally.

1.2 Verifiable statements and experimental domains

We now focus on those statements that are verifiable: we have a way to experimentally confirm
that the statement is true. The main result of this section is that not all functions of verifiable
statements are verifiable statements. For example, since a test has to finish in a finite amount
of time we are not going to be able to verify a statement that is the conjunction (i.e. logical
AND) of infinitely many statements. We are also going to group verifiable statements into
experimental domains which represent all the experimental evidence about a scientific subject
that can be acquired in an indefinite amount of time.

The previous section took care of universality and non-contradiction, but the principle of
scientific objectivity requires science to be evidence based. Consider the statements “23 is
a prime number”, “it is immoral to kill a person exclusively for monetary gain” or “God is
eternal”. They deal with abstract concepts that cannot be defined operationally and therefore
cannot be experimentally verified conclusively. Again, this does not mean these concepts are
of less significance, just that they cannot be the subject of scientific inquiry.10

Limiting the scope of our discussion to objects and properties that are well defined physi-
cally is also not enough. For example, “the electron is green” or “1 meter is equal to 5 Kelvin”
are still not suitable scientific statements as the relationships established are not physically
meaningful. Even when the relationship is meaningful, we may still not be able to validate it
experimentally. For example, “there is no extra-terrestrial life” or “the mass of the electron is
exactly 9.109× 10−31 kg” are not statements that can be verified in practice. In the first case,
we would need to check every corner of the universe and find none, with the closest galaxy
like ours, Andromeda, being 2.5 million light-years away; in the second case, we will always
have an uncertainty associated with the measurement, however small.

So we have to narrow the scope to those and only those statements that can be verified
experimentally. That is, we have to provide an experimental test: a repeatable experimental
procedure (i.e. evidence based) that anyone (i.e. universal) can in principle execute and obtain

10In fact, one may be more interested in them precisely because of their abstract, and therefore less transient,
nature.
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consistent results (i.e. non-contradictory). This is both the power and the limit of scientific
inquiry: it gives us a way to construct a coherent description of the physical world but it is
limited to those aspects that can be reliably studied experimentally.

Note that certainty and impossibility are trivially verifiable since we know a priori that
they are true and false respectively. Also note that if we have two statements that are
equivalent, having a test that verifies one means we have a test that verifies the other as well.
For example, since “that animal is a bird” is equivalent to “that animal has feathers”, checking
whether the animal has feathers is equivalent to checking whether the animal is a bird. The
subtlety here is that the evidence may be indirect and it is only the relationship between
statements (i.e. the theoretical model) that guarantees the validity of the verification. This
should not worry us, though, because in this strict sense most experimental data is indirect.
It comes from a chain of inductions (e.g. the pulse of light is produced, bounces off a moving
target and changes frequency due to the Doppler effect, the light signal is transduced to an
electronic signal which finally is displayed on the device) and therefore needs a theoretical
framework to be properly understood.

Axiom 1.27 (Axiom of verifiability). A verifiable statement is a statement that, if
true, can be shown to be so experimentally. Formally, each logical context S contains a
set of statements Sv ⊆ S whose elements are said to be verifiable. Moreover, we have the
following properties:

� every certainty ⊺ ∈ S is verifiable
� every impossibility � ∈ S is verifiable
� a statement equivalent to a verifiable statement is verifiable

Justification. To give a better justification for this and later axioms, we introduce the
following pseudo-mathematical concepts. As science is evidence based, for each logical
context S we must have at our disposal a set of experimental tests, which we indicate
with E . Each element e ∈ E is a repeatable procedure (i.e. it can be restarted and stopped
at any time) that anybody can execute and will always terminate successfully, terminate
unsuccessfully or never terminate. As the tests must provide evidence, the output of the
test must depend on the truth values of the statements; therefore we can assume we have
a function result ∶ E × AS → {success,failure,undefined}. For a statement s to be
verifiable, there must be an experimental test e that succeeds if and only if the statement
is true. That is, for all a ∈ AS , result(e, a) = success if and only if a(s) = true.

Certainties and impossibilities can be associated with trivial tests that always terminate
successfully or unsuccessfully respectively. This justifies assuming them to be verifiable.
As for equivalence and verifiability, let s1, s2 ∈ S and suppose s1 is verifiable. This means
there is a test e ∈ E such that result(e, a) = success if and only if a(s1) = true. Since the
statements are equivalent, a(s1) = true if and only if a(s2) = true. Therefore result(e, a) =
success if and only if a(s2) = true. We are therefore justified to assume s2 is verifiable.

Precisely defining experimental tests as procedures will present the same type of prob-
lems in defining statements or logical consistency, therefore we leave them as primary
concepts. But as primary concepts they only complicate the formal framework without
adding insights, therefore we use them only as part of the justifications for the axioms.
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Experimental tests are the second and last building block of our general mathematical
theory of experimental science. As with statements, any language (e.g. natural, formal,
engineering drawings, computer programs, ...) can in principle be used to describe the pro-
cedure, which can be arbitrarily complicated. It may require building detectors, gathering
large amounts of data and performing complicated computations. We are not going to care
how these procedures are described, just that it is done in a way that allows us to execute
the test.11

As an example, consider a procedure along the lines of:

1. find a swan
2. if it’s black terminate successfully
3. go to step 1

If a black swan exists, at some point we’ll find it and the test will be successful. If a black
swan does not exist, then the procedure will never terminate and the result is undefined. This
is something anybody can do and will eventually always provide the same result: it is an
experimental test. It also terminates successfully if and only if a black swan exists, so the
statement “black swans exist” is verifiable.

Note that, in principle, science can also study statements that can be refuted experimen-
tally. But the negation of those is a statement that can be verified experimentally. Therefore
we lose nothing by only focusing on verification.12

In the previous section we saw that we can combine statements into new statements. How
about verifiable statements? Can we always combine verifiable statements into other verifiable
statements? Since all truth functions can be constructed from the three basic Boolean opera-
tions, the question becomes: can we construct experimental tests for the negation, conjunction
and disjunction of verifiable statements?

The first important result is that the negation of an experimental test, an experimental test
that is successful when the first is not successful, does not necessarily exist. Consider our black
swan example, an experimental test for the negation would be a procedure that terminates
successfully if black swans do not exist. But the given procedure never finishes in that case,
so it is not just a matter of switching success with failure. Because of non-termination, not-
successful does not necessarily mean failure.13 Moreover, it is a result of computability theory
that some problems are undecidable: they do not allow the construction of an algorithm that
always terminates with a correct yes-or-no answer. So we know that in some cases this is not
actually possible.

In the same vein we are able to confirm experimentally that “the mass of this particle is not
zero” but not that “the mass of this particle is exactly zero” since we always have uncertainty
in our measurements of mass. Even if we could continue shrinking the uncertainty arbitrarily,
we would ideally need infinite time to shrink it to zero. What this means is that not all answers
to the same question can be equally verified. Is the mass of the photon exactly zero? We can

11Trying to formalize a universal language for experimental tests is not only impractical but also conceptually
problematic. To know what we can test experimentally is to know what is physically possible, which is
equivalent to knowing the laws of physics, which is what we are trying to construct a framework for.

12Mathematically, the spaces of verifiable statements and refutable statements are dual to each other.
13In this case, the old adage “absence of evidence is not evidence of absence” applies.
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either give a precise “no” or an imprecise “it’s within this range.” Is there extra-terrestrial
life? We can either give a precise “yes” or an imprecise “we haven’t found it so far.”14

Remark. The negation or logical NOT of a verifiable statement is not necessarily a
verifiable statement.

Justification. A statement s ∈ S is verifiable if we can find e ∈ E such that result(e, a) =
success if and only if a(s) = true for all a ∈ AS . This means that for some a ∈ AS we
may have a(s) = false and result(e, a) = undefined. That is, the test is not guaranteed
to terminate if the statement is false. Therefore we cannot, in general, use e to construct
a statement that terminates whenever s is false. Therefore we are not justified, in general,
to assume that the negation of a verifiable statement is verifiable.

While this is true in general, we can still test the negation of many verifiable statements.
Consider the statement “this swan is black”. It allows the following experimental test:

1. look at the swan
2. if it’s black terminate successfully
3. terminate unsuccessfully

Note that, since the test always terminates, we can switch failure to success and vice-versa.
In this case we can test the negation and we say that the statement is decidable: we can
decide experimentally whether it is true or false. It is precisely when and only when the test
is guaranteed to terminate, that we can test the negation.

Definition 1.28. A falsifiable statement is a statement that, if false, can be shown
to be so experimentally. Formally, a statement s is falsifiable if its negation ¬s ∈ Sv is a
verifiable statement.

Justification. Note that the informal definition is based on experimentally showing that
the statement is false, while the formal definition is based on the falsifiable statement to
be the negation of a verifiable one. We have to show they are equivalent.

For a statement s ∈ S to be falsifiable, there must be an experimental test e ∈ E that
fails if and only if the statement is false. That is, for all a ∈ AS , result(e, a) = failure if
and only if a(s) = false.

Let e ∈ E be an experimental test and consider e¬(e) defined as follows:

1. run test e
2. if e is unsuccessful terminate successfully
3. if e is successful terminate unsuccessfully.

Since e is repeatable and can be executed by anybody, e¬(e) is also repeatable and can be
executed by anybody. Therefore we are justified to assume e¬(e) ∈ E .

Now let s be a verifiable statement, then we can find e ∈ E such that result(e, a) =
success if and only if a(s) = true. We also have result(e¬(e), a) = failure if and only
if result(e, a) = success and a(¬s) = false if and only if a(s) = true. Therefore for

14Note that we are on purpose avoiding induction. It does not play any role in our general mathematical
theory of experimental science since the decision of when and how to apply induction violates the principle of
scientific objectivity.
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all a ∈ AS , result(e¬(e), a) = failure if and only if a(¬s) = false. Which means ¬s is
falsifiable if and only if s is verifiable. This justifies the definition.

Definition 1.29. A decidable statement is a statement that can be shown to be either
true or false experimentally. Formally, a statement s is decidable if s ∈ Sv and ¬s ∈ Sv. We
denote Sd ⊆ Sv the set of all decidable statements.

Justification. Note that the informal definition is based on experimentally showing
that the statement is either true or false, while the formal definition is based on both the
decidable statement and its negation to be verifiable. We have to show they are equivalent.

Let s ∈ S be a decidable statement and e ∈ E an experimental test that verifies whether
the statement is true or false. That is, result(e, a) = success if and only if a(s) = true
and result(e, a) = failure if and only if a(s) = false for all a ∈ AS . Then s is verifiable.
We also have result(e¬(e), a) = success if and only if a(¬s) = true. Therefore s is also
verifiable.

Conversely, let s ∈ S be a verifiable statement such that ¬s is also verifiable. Let
e, e¬ ∈ E be their respective experimental tests. We have to be careful as e and e¬ may not
terminate. Consider the procedure ê(e, e¬) defined as follows:

1. initialize n to 1
2. run the test e for n seconds
3. if e is successful, terminate successfully
4. run the test e¬ for n seconds
5. if e¬ is successful, terminate unsuccessfully
6. increment n and go to step 2

The procedure is repeatable and can be executed by anybody therefore ê(e, e¬) ∈ E . Both e
and e¬ are eventually run an arbitrarily long amount of time therefore result(ê(e, e¬), a) ∈
{success,failure}, that is the test will always terminate. We have result(ê(e, e¬), a) =
success if and only if result(e, a) = success if and only if a(s) = true. We also have
result(ê(e, e¬), a) = failure if and only if result(e¬, a) = success if and only if a(¬s) =
true if and only if a(s) = false. Therefore s is decidable. This justifies the definition.

Corollary 1.30. Certainties and impossibilities are decidable statements.

Proof. Let ⊺ ∈ S be a certainty and � ∈ S be an impossibility. By 1.27 they are verifiable
statements. We also have ⊺ ≡ ¬� therefore they are decidable by definition.

We introduce decidable statements here because their definition and related properties
clarify what happens during negation, but they do not play a major role in our framework.
They represent a special case which will we turn to time and time again over the course of
this work.

Combining verifiable statements with conjunction (i.e. the logical AND) is more straight-
forward. If we are able to verify that “that animal is a swan” and that “that animal is black”,
we can verify that “that animal is a black swan” by verifying both. If the tests for both are
successful, then the test for the conjunction is successful. That is, if we have two or more
verifiable statements, we can always construct an experimental test for the logical AND by
running all tests one at a time and check if they are successful. Yet, the number of tests
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needs to be finite or we would never terminate, so we are limited to the conjunction of a finite
number of verifiable statements.

Axiom 1.31 (Axiom of finite conjunction verifiability). The conjunction of a finite collec-
tion of verifiable statements is a verifiable statement. Formally, let {si}ni=1 ⊆ Sv be a finite

collection of verifiable statements. Then the conjunction
n

⋀
i=1

si ∈ Sv is a verifiable statement.

Justification. Let {si}ni=1 ⊆ Sv be a finite collection of verifiable statements. Then we can
find a corresponding set of experimental tests {ei}ni=1 ⊆ E such that result(ei, a) = success
if and only if a(si) = true for all a ∈ AS .

Let
n

⋀
i=1

ei be the experimental procedure defined as follows:

1. for each i = 1..n run the test ei
2. if all tests terminate successfully then terminate successfully
3. terminate unsuccessfully.

The experimental procedure so defined is repeatable, can be executed by anybody, therefore
n

⋀
i=1

ei ∈ E . We have, for every a ∈ AS , result(
n

⋀
i=1

ei, a) = success if and only if result(ei, a) =

success for all i if and only if a(si) = true for all i if and only if a(
n

⋀
i=1

si) = true.

Therefore
n

⋀
i=1

si is a verifiable statement. We are therefore justified to assume that the

finite conjunction of verifiable statements is a verifiable statement.
Note that this cannot be generalized to infinite collections as the procedure would not

be guaranteed to terminate. In fact, if the only way to test the infinite conjunction is to
test each statement individually, then we are guaranteed to take infinite time and the test
will never terminate. Therefore we are not justified to assume the infinite conjunction of
verifiable statements is verifiable.

Combining verifiable statements with disjunction (i.e. the logical OR) is also straightfor-
ward. To verify that “the swan is black or white” we can first test that “the swan is black”.
If that is verified that’s enough: the swan is black or white. If not, we test that “the swan
is white”. That is, if we have two or more verifiable statements we can always construct an
experimental test for the logical OR by running all tests and stopping at the first one that is
successful. Because we stop at the first success, the number of tests can be countably infinite.
As long as one test succeeds, which will always be the case when the overall test succeeds, it
does not matter how many elements we are not going to verify later. But it cannot be more
than countably infinite since the only way we have to find if one experimental test in the set
is successful is testing them all one by one. Therefore we are limited to the disjunction of a
countable number of verifiable statements.

Axiom 1.32 (Axiom of countable disjunction verifiability). The disjunction of a countable
collection of verifiable statements is a verifiable statement. Formally, let {si}∞i=1 ⊆ Sv be a

countable collection of verifiable statements. Then the disjunction
∞

⋁
i=1

si ∈ Sv is a verifiable

statement.
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Justification. Let {si}∞i=1 ⊆ Sv be a countable collection of verifiable statements. Then
we can find a corresponding set of experimental tests {ei}∞i=1 ⊆ E such that result(ei, a) =
success if and only if a(si) = true for all a ∈ AS .

In this case, we have to be careful to handle tests that may not terminate. Let
∞

⋁
i=1

ei be

the experimental procedure defined as follows:

1. initialize n to 1
2. for each i = 1..n

a) run the test ei for n seconds
b) if ei terminates successfully then terminate successfully

3. increment n and go to step 2

The experimental procedure so defined is repeatable, can be executed by anybody, therefore
∞

⋁
i=1

ei ∈ E . The procedure will eventually run all tests for an arbitrarily long amount of time.

Therefore, for every a ∈ AS , result(
∞

⋁
i=1

ei, a) = success if and only if result(ei, a) = success

for some i if and only if a(si) = true for some i if and only if a(
∞

⋁
i=1

si) = true. Therefore

∞

⋁
i=1

si is a verifiable statement. We are therefore justified to assume that the countable

disjunction of verifiable statements is a verifiable statement.
Note that this cannot be generalized to uncountable infinite collections as the procedure

would not be guaranteed to eventually run all tests. In fact, suppose the only way to test
the uncountable disjunction is to test each statement individually. We would then need to,
at least, run all of them for a finite time, say one minute. Even assuming arbitrary long
time, we would only have countably many minutes at our disposal. Since the set of tests is
uncountable, we are not going to be able to run each test for one minute. Therefore we are
not justified to assume the uncountable disjunction of verifiable statements is verifiable.

Proposition 1.33. The conjunction and disjunction of a finite collection of decidable
statements are decidable. Formally, let {si}ni=1 ⊆ Sd be a finite collection of decidable

statements. Then the conjunction
n

⋀
i=1

si ∈ Sd and the disjuction
n

⋁
i=1

si ∈ Sd are decidable

statements.

Proof. Let {si}ni=1 ⊆ Sd be a finite collection of decidable statements. Then {si}ni=1 ⊆ Sv
and {¬si}ni=1 ⊆ Sv are verifiable. Consider

n

⋀
i=1

si: this is the finite conjunction of verifiable

statements and is therefore a verifiable statement by 1.31. Consider its negation ¬
n

⋀
i=1

si ≡
n

⋁
i=1

¬si: this is the finite disjunction of verifiable statements and is therefore a verifiable

statement by 1.32. The finite conjunction of decidable statements is decidable by definition.
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Similarly, consider
n

⋁
i=1

si: this is the finite disjunction of verifiable statements and is

therefore a verifiable statement by 1.32. Consider its negation ¬
n

⋁
i=1

si ≡
n

⋀
i=1

¬si: this is the

finite conjunction of verifiable statements and is therefore a verifiable statement by 1.31.
The finite disjunction of decidable statements is decidable by definition.

Note that this cannot be generalized to infinite collection as it would require closure
under infinite conjunction. Also note that this result is consistent with the experimental
tests given in 1.31 and 1.32.

Taken as a whole, finite conjunction and countable disjunction define the algebra of
verifiable statements. It is limited compared to the algebra of statements and it tells us
that, in practice, we are not going to be able in general to construct an experimental test
whose success is an arbitrary function of the success of other tests.

Operator Gate Statement Verifiable Statement Decidable Statement

Negation NOT allowed disallowed allowed
Conjunction AND arbitrary finite finite
Disjunction OR arbitrary countable finite

Table 1.3: Comparing algebras of statements.

Before we continue, it is interesting and useful to stop and understand the interplay
between scientific and mathematical constructs.15 Technically, 1.2, 1.4, 1.9, 1.27, 1.31 and
1.32 are the axioms of our mathematical formalism for statements. Note that the actual
content of the statements, the methodology for which an assignment is deemed possible and
the procedures for experimental verification are not formally defined: the math simply uses
symbols to label and identify them. The only assumptions are that statements exist (organized
in logical contexts with possible assignments, one of which is the true one), that some of them
are verifiable and that they admit the associated algebra. The mathematical formalism does
not know what the symbols actually represent: they may as well be pieces of cardboard
painted black or white. The math can only derive consequence given the premise, but it
does not know whether the premise makes actual sense. In other words, the way that we are
making the framework mathematically precise is not by making everything mathematically
precise: it is by omitting the details that are not amenable to a precise specification.

We should stress this for a couple of reasons. First, the part that is not formalized is
the most important part. Discovering new science is exactly finding new things to study
(i.e. new statements), new connections between known objects (i.e. new logical relationships)
or devising new measurement techniques (i.e. new experimental tests). The content of the
statements, their semantic relationships and the procedure of the experimental tests is the
actual science. Everything that follows is, in a sense, the trivial bit and that is why it can
be done generally. Which leads to the second reason: understanding whether statements and
verifiable statements actually follow the algebras we defined is crucial. The math just takes

15It took us many many confusing years to fully understand where the scientific argument ends and the
mathematical argument begins, what makes sense to assume physically and what makes sense to prove rigor-
ously. Part of the confusion is that this line is not objective but it is based on what is considered “precise”
by a mathematician, which has evolved considerably through the centuries. The rule we follow is: in the
mathematical formalism the only objects that can be left unspecified are the elements of a set.
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it at face value, it does not prove it. The justifications for our axioms, then, are the most
critical part of this work and they are not mathematical proofs. If we botch them, we’ll have
a nice, consistent, rich but meaningless mathematical framework. Lastly, it has to be clear
that something gets lost in the formalization. The mathematical framework cannot carry all
the physics content: we removed the most important part! Different systems may have the
same mathematical description, so the scientific content can never be entirely reconstructed
from the math. That is why we always have to carefully bring it along.

Now that we have characterized verifiable statements we want to understand how to
characterize groups of them. Consider the verifiable statements

“that animal is a duck”
“that animal is a swan”
“that animal is white”
“that animal is black”
“that animal is a black swan”
“that animal is a white duck”
“that animal is a duck or a swan”

Since some depend on others, we do not need to actually run all the tests. Once we have
tested the first four we have gathered enough information for the others. We call this set a
basis.16

Definition 1.34. Given a set D of verifiable statements, B ⊆ D is a basis if the truth
values of B are enough to deduce the truth values of the set. Formally, all elements of D
can be generated from B using finite conjunction and countable disjunction.

Note that once we have tested the basis, we have tested any other verifiable statement
that can be constructed from it. In the example before, once we tested the first four we
have implicitly tested “that animal is a black duck”. It is also true that impossibilities and
certainties don’t really need to be tested. We already know that “that animal is a duck and
a swan” is false. The idea, then, is to group verifiable statements into experimental domains
that can be seen as all the experimental information one can gather for a particular subject.
These will include the certainty, the impossibility and any other verifiable statement that can
be constructed from a basis. The basis, though, has to be countable so that, by running one
test at a time, we can hope to eventually reach any element.

Definition 1.35. An experimental domain D represents a set of verifiable statements
that can be tested and possibly verified in an indefinite amount of time. Formally, it is a
set of statements, closed under finite conjunction and countable disjunction, that includes
precisely the certainty, the impossibility, and a set of verifiable statements that can be
generated from a countable basis.

Justification. In principle, indefinite is different from infinite. Having infinite time
at our disposal literally means that we can go on forever, which we cannot do. Having

16The term basis is used in general to define a set of objects from which, through a series of operations, one
can construct the full space. It is the same for a vector space: from a basis one can construct any other vector
through linear combination. What changes is what objects are combined and what operations are used.
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indefinite time means that, while at some point we have to stop, we have to be prepared
to keep going on because we do not know when we will stop. In practice, in both cases we
have to make a plan for an infinite amount of time. In the indefinite case, our plan will be
cut short.

As we have already argued, we cannot run uncountably many tests in infinite time. Let
E ⊂ E be an uncountable set of experimental tests. Let t0 be the amount ot time that the
shortest test will take to run. Each test must at least run for t0 time. Given that each test
will succeed in finite non-zero time, at best t0 is a finite number. We can divide time into
slots of t0 time. The slots will be countable. As E is uncountable, we cannot associate
each test to a slot. We cannot test uncountably many tests.

We can, however, test countably many tests. Let B = {ei}∞i=1 ∈ E be a countable set of
tests. Ee can proceed as follows:

1. initialize n to 1
2. for each i = 1..n

a) run the test ei for n seconds

3. increment n and go to step 2

This will run all tests for an indefinite amount of time.
Now let D ⊆ S be the set of statements generated by B using finite conjunction and

countable disjunction. Then D ⊆ Sv is a set of verifiable statements. Furthermore, testing
B will eventually verify each true statement in D.

Therefore we are justified to assume that a set D ⊆ Sv of verifiable statements that can
be tested in an indefinite amount of time must have a countable basis. We are also justified
to assume that it contains the certainty and the impossibility as these are two verifiable
statements, and two verifiable statements can always be added to a countable basis and
keep it countable. This justifies the definition.

We can think of an experimental domain as the enumeration of all possible verifiable
answers to a scientific question. For example, the domain related to the question “what is
that animal?” would include “it is a mammal”, “it is a dog”, “it is an animal with feathers”
and so on. If two statements are possible answers to that question, then their conjunction
and disjunction will also be possible answers. For example: “it is a dog or a cat” or “it is a
mammal and it lays eggs”.

While each statement only needs finite time to be verified, we allow indefinite time for the
domain because we want to capture those questions that can be answered only approximately.
The idea is that, given more time, we can always get a better answer so, in principle, we have
an infinite sequence of tests to perform and continue indefinitely.

The basis not only serves as a way to constrain the size of the experimental domain, but
most of the time it will also serve to define the experimental domain itself. We will typically
start by characterizing a set of verifiable statements (e.g. a set of characteristics of animals
and how to identify them) and then consider the domain of all the verifiable statements that
can be constructed from them (e.g. the set of all animals and groups of animals we can
identify).
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1.3 Theoretical domains and possibilities

The basis for an experimental domain allows us to create a procedure that will eventually test
any verifiable statement. But to fully characterize a domain we want to find those statements,
like “that animal is a cat” or “the mass of the photon is exactly 0 eV”, that, if true, determine
the truth value of all verifiable statements in the domain. The main result of this section is
that these statements, which we call possibilities for the domain, are not necessarily verifiable
themselves. We will therefore need to introduce theoretical domains which consist of those
statements we can use to give predictions for an experimental domain. We will also be able
to conclude that the set of possibilities for an arbitrary experimental domain has at most the
cardinality of the continuum, thus putting a hard constraint on what type of mathematical
objects are useful in science.

Suppose DX is the domain of animal species identification. It will contain verifiable state-
ments such as “that animal has feathers”, “that animal has claws”, “that animal has paws”.
Some statements are broader and some are narrower. But some statements, like “that animal
is a mute swan (Cygnus olor)” or “that animal is a mallard duck (Anas platyrhynchos)”, are
special because if we verify those then we are able to know which other statements are true
or false. Once we verify those we are essentially done. These are what we call the possibilities
of the domain and enumerating them means characterizing the experimental domain.

Unfortunately, not all possibilities are verifiable statements. Consider the statements
s1 =“there is extra-terrestrial life” and s2=“there is no extra-terrestrial life”. We can create
an experimental test for the first (i.e. find extra-terrestrial life somewhere) but not for the
second (it would require us to check every place in the universe which is something we cannot
do). So, for this question, the experimental domain DX = {s1,⊺,�} is composed of the
first statement, the certainty and the impossibility. But s2 is conceptually still one of the
possibilities: if true we have a complete answer for the domain.

What happens is that while the negation of a verifiable statement is not always a verifi-
able statement, it is still a statement that can be used to characterize the outcome of some
experimental test. While we cannot verify non-termination of an experimental test, we can
still predict it. To be able to find all possibilities, then, we have to create the set of statements
that can be used to make predictions which include negations. We call this set the theoretical
domain and theoretical statements its elements.

Definition 1.36. The theoretical domain D̄ of an experimental domain D is the set of
statements constructed from D to which we can associate a prediction. We call theoretical
statement a statement that is part of a theoretical domain. More formally, D̄ is the
set of all statements generated from D using negation, finite conjunction and countable
disjunction.

Justification. The theoretical domain is defined to contain all statements that depend
on the verifiable statements for which we can associate a prediction. A statement in the
theoretical domain, therefore, must be associated to a procedure that can be constructed
in terms of the tests of the verifiable statements, regardless of whether the procedure is
guaranteed to terminate.

First of all, any verifiable statement is a theoretical statement. In fact, let s ∈ D be
a verifiable statement. Then there is a test e ∈ E associated to s. Therefore s ∈ D̄ is a
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theoretical statement.
In the previous justifications, we saw how to construct tests for negation, finite con-

junction and countable disjunction. We can use these to construct tests of theoretical
statements from other theoretical statements. Let s ∈ D̄ be a theoretical statement. Then
there is a test e ∈ E associated to s. Consider ¬s. This can be associated with the test
e¬(e) ∈ E . Therefore ¬s is a theoretical statement. Let {si}ni=1 ∈ D̄ be a finite collection of
theoretical statements. Then there is a finite collection of tests {ei}ni=1 ⊆ E each associated

to the respective statement. Consider
n

⋀
i=1

si. This can be associated with the test
n

⋀
i=1

ei ∈ E .

Therefore
n

⋀
i=1

si is a theoretical statement. Let {si}∞i=1 ∈ D̄ be a countable collection of theo-

retical statements. Then there is a countable collection of tests {ei}∞i=1 ⊆ E each associated

to the respective statement. Consider
∞

⋁
i=1

si. This can be associated with the test
∞

⋁
i=1

ei ∈ E .

Therefore
∞

⋁
i=1

si is a theoretical statement.

Therefore we are justified to assume the theoretical domain contains the closure of
the experimental domain under negation, finite conjunction and countable disjuction. As
shown later, this will automatically include countable conjunction as well.

Note that, as before, this cannot be generalized to uncountable operations, as a pro-
cedure can be composed only of countably many non-zero-time operations. Therefore we
are not justified to close under uncountable operations.

Because of its construction, the theoretical domain will also include all the limits of all
the sequences of verifiable statements. Consider the experimental domain for the mass of the
photon. It will contain verifiable statements such as

s1 =“the mass of the photon is smaller than 10−1 eV”
s2 =“the mass of the photon is smaller than 10−2 eV”
s3 =“the mass of the photon is smaller than 10−3 eV”
...

It will not contain the statement s =“the mass of the photon is exactly 0 eV”, though, as we
cannot measure a continuous quantity with infinite precision.

Note s can be seen as the limit of the sequence of ever increasing precision, but can

also be seen as the conjunction for all those statements s =
∞

⋀
i=1

si. In fact, the mass of the

photon is exactly 0 if and only if all the finite precision measurements will contain 0 in the
range. It makes sense, then, that it is not part of the experimental domain because only finite
conjunctions of verifiable statements are verifiable. But we expect s to be a possibility for the
mass of the photon. Why should it be in the theoretical domain?

Because of the De Morgan properties in 1.19, we can express conjunctions in terms of

negation and disjunction. So we have s =
∞

⋀
i=1

si = ¬
∞

⋁
i=1

¬si. Therefore by allowing negation

we are also allowing countable conjunction and therefore we are including all the limits of
sequences of verifiable statements.
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Proposition 1.37. All theoretical domains are closed under countable conjunction.

Proof. Any countable conjunction s =
∞

⋀
i=1

si is equivalent to the negation of disjunction

of the negation: s = ¬
∞

⋁
i=1

¬si. As the theoretical domain is closed under negation and

countable disjunction, so it is closed under countable conjunction.

Definition 1.38. A theoretical statement s ∈ D̄ is approximately verifiable if it is the
limit of some sequence of verifiable statements. Formally, s ∈ D̄ is approximately verifiable

if there exists a sequence {si}∞i=1 ∈ D such that s =
∞

⋀
i=1

si.

Note that we are closed under countable operations and not arbitrary (e.g. uncountable).
Therefore there could be statements that can be constructed from verifiable statements that
are not even theoretical statements. One such statement, for example, could be constructed
given a set U of possible mass values for a particle that is uncountable, has an uncountable
complement, and where the elements are picked arbitrarily and not according to a simple
rule.17 The statement “the mass of the particle expressed in eV is in the set U” can only be
tested by checking each value individually. But since the set is uncountable and a procedure
can only be made of countably many steps, it will be impossible to construct a test for such
a statement.

A theoretical statement, then, is one for which we can at least conceive an experimental
test. This may not always terminate if the statement is true or it may not always terminate
if the statement is false, but at least we have one. The statements that depend on the
experimental domain but are not part of the theoretical domain do not even hypothetically
allow for a procedure, regardless of the fact that it can terminate, and therefore we do not
consider them part of our scientific discourse, even theoretically.

In general, given a theoretical statement s̄, we would like to characterize what experimen-
tal test can be associated to it. Ideally, we want the experimental test for that statement
that terminates, successfully or unsuccessfully, in the most cases. Consider all the verifiable
statements that are narrower than s̄. If we take their disjunction we get the broadest ver-
ifiable statement that is still narrower than s̄. We call this the verifiable part of s̄, noted
ver(s̄). Testing ver(s̄) means running the test that is guaranteed to terminate successfully in
the broadest situations in which s̄ is true. In fact, if s̄ is itself verifiable then ver(s̄) will be
exactly s̄.

Conversely, consider all the verifiable statements that are incompatible with s̄. If we take
their disjunction we get the broadest verifiable statement that is still incompatible with s̄. We
call this the falsifiable part of s̄, noted fal(s̄). Testing fal(s̄) means running the test that is
guaranteed to terminate successfully in the broadest situations in which s̄ is false. In fact, if
s̄ is itself falsifiable then fal(s̄) will be exactly ¬s̄.

To each theoretical statement, then, we associate the experimental test constructed by
returning successfully if the test for the verifiable part succeeds and returning unsuccessfully
if the test for the falsifiable part succeeds. We will not be able to terminate if either of those
doesn’t terminate, which will correspond to the statement ¬ver(s̄) ∧ ¬ fal(s̄) being true. We
call this the undecidable part of s̄, noted und(s̄).

17Mathematically, we are looking for a set of real numbers that is not a Borel set.



1.3. THEORETICAL DOMAINS AND POSSIBILITIES 29

In light of this, consider s =“the mass of the photon is rational as expressed in eV”. It is
the disjunction of all possibilities with rational numbers, which is countable, and therefore is a
theoretical statement. Since we can only experimentally verify finite precision intervals, each
verifiable statement will include infinitely many rational (and irrational) numbers. There-
fore no verifiable statement is narrower than s and therefore ver(s) ≡ �. But for the same
reason no verifiable statement is incompatible with s and therefore fal(s) ≡ �. Which means
und(s̄) ≡ ⊺. This means that the experimental test for s will never terminate either success-
fully or unsuccessfully. We call this type of statements undecidable as we will never be able
to experimentally test anything about them.

Definition 1.39. Let s̄ ∈ D̄ be a theoretical statement. We call the verifiable part ver(s̄) =
⋁s∈D ∣ s≼s̄ s the broadest verifiable statement that is narrower than s̄. We call the falsifiable
part fal(s̄) = ⋁s∈D ∣ s�s̄ s the broadest verifiable statement that is incompatible with s̄. We
call the undecidable part und(s̄) = ¬ver(s̄) ∧ ¬ fal(s̄) the broadest statement incompatible
with both the verifiable and the falsifiable part.

Corollary 1.40. The verifiable, falsifiable and undecidable part partition the certainty.
That is, for every s̄ ∈ D̄ we have ⊺ ≡ ver(s̄) ∨ und(s̄) ∨ fal(s̄) while ver(s̄) � und(s̄), ver(s̄) �
fal(s̄) and und(s̄) � fal(s̄).

Proof. We have und(s̄) = ¬ver(s̄) ∧ ¬ fal(s̄) ≡ ¬(ver(s̄) ∨ fal(s̄)). Therefore ⊺ ≡ und(s̄) ∨
¬und(s̄) ≡ und(s̄) ∨ ver(s̄) ∨ fal(s̄).

Since ver(s̄) ≼ s̄ and fal(s̄) � s̄ we have ver(s̄) � fal(s̄). Since und(s̄) ≡ ¬ver(s̄)∧¬ fal(s̄) ≼
¬ver(s̄) and therefore und(s̄) � ver(s̄). Similarly, we have und(s̄) ≼ ¬ fal(s̄) and therefore
und(s̄) � fal(s̄).

Corollary 1.41. A theoretical statement s̄ ∈ D̄ is verifiable if and only if s̄ ≡ ver(s̄). It is
falsifiable if and only if ¬s̄ ≡ fal(s̄). It is decidable if and only if und(s̄) ≡ �.

Proof. Let s̄ be a verifiable statement. Then s̄ itself is the broadest verifiable state-
ment compatible with itself and therefore s̄ ≡ ver(s̄). Conversely, let s̄ ≡ ver(s̄), then s̄ is
equivalent to a verifiable statement and is therefore verifiable.

Let s̄ be a falsifiable statement. Then ¬s̄ itself is the broadest verifiable statement
incompatible with s̄ and therefore ¬s̄ ≡ fal(s̄). Conversely, let ¬s̄ ≡ fal(s̄), then ¬s̄ is
equivalent to a verifiable statement and s̄ is therefore falsifiable.

Let s̄ be a decidable statement. Then und(s̄) = ¬ver(s̄) ∧¬ fal(s̄) ≡ ¬s̄∧¬¬s̄ ≡ ¬s̄∧ s̄ ≡ �.
Conversely, let und(s̄) ≡ �. Then ver(s̄) and fal(s̄) are two incompatible statements whose
disjunction is a certainty. This means ver(s̄) ≡ ¬ fal(s̄). Since ¬ fal(s̄) ≡ ver(s̄) ≼ s̄ ≼
¬ fal(s̄) ≡ ver(s̄) then s̄ ≡ ver(s̄) and ¬s̄ ≡ fal(s̄). Therefore s̄ is decidable.

Corollary 1.42. For every theoretical statement s̄, the undecidable part und(s̄) is a falsi-
fiable statement.

Proof. Since und(s̄) ≡ ¬(ver(s̄)∨ fal(s̄)) then it is the negation of a verifiable statement
and is therefore falsifiable.

Definition 1.43. A theoretical statement s̄ ∈ D̄ is undecidable if und(s̄) ≡ ⊺.
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The theoretical domain, then, contains all sort of edge cases. Similar to undecidable state-
ments, we could have statements that can just never be verified experimentally (i.e. ver(s) ≡ �)
or just never falsified (i.e. fal(s) ≡ �). The possible presence of these types of statements means
we have to be cautious in giving physical significance to all theoretical statements, as the only
thing we may be able to say about some is that nothing can be said about them.18

In particular, we want to be able to understand when two statements represent two distinct
situations that we can tell apart experimentally. If the two statements are verifiable (e.g. “the
mass is between 1 and 2 Kg” and “the mass is between 2 and 3 Kg”), incompatibility will
be enough to tell us that the two cases are distinct (only one can happen at a time) since
verifying one will be enough to exclude the other. If the statements are not both verifiable
(e.g. “the mass is between 1 and 2 Kg” and “the mass is exactly 2 Kg”) being incompatible
is not enough: their undecidable parts may be compatible in which case we cannot verify one
and exclude the other at the same time. In that case, we would not be able to distinguish the
two cases experimentally.

For two statements s̄1 and s̄2 to be experimentally distinguishable, then, we need to have
a third statement s̄ whose verifiable part is broader than one (e.g. ver(s̄) ≽ s̄1) and whose
falsifiable part is broader than the other (e.g. fal(s̄) ≽ s̄2). This way if s̄ is found to be true
experimentally, we know that s̄1 may be true and s̄2 must be false; if s̄ is found to be false
experimentally, we know that s̄1 must be false and s̄2 may be true; if the test for s̄ does not
terminate, then both statements must be false so we are in neither of those cases.

Definition 1.44. Let s̄1, s̄2 ∈ D̄ be two theoretical statements. We say they are experi-
mentally distinguishable if we can find a theoretical statement s̄ ∈ D̄ such that s̄1 ≼ ver(s̄)
and s̄2 ≼ fal(s̄).

Proposition 1.45. Two theoretical statements s̄1, s̄2 ∈ D̄ are experimentally distinguishable
if and only if we can find two verifiable statements s1, s2 ∈ D̄ such that s1 � s2, s̄1 ≼ s1 and
s̄2 ≼ s2.

Proof. Let s̄1, s̄2 ∈ D̄ be experimentally distinguishable. Then we can find s̄ such that
s̄1 ≼ ver(s̄) and s̄2 ≼ fal(s̄). Moreover, ver(s̄) � fal(s̄). Therefore ver(s̄) and fal(s̄) are
verifiable statements that satisfy the condition in the proposition.

Conversely, let s1, s2 ∈ D̄ such that s1 � s2, s̄1 ≼ s1 and s̄2 ≼ s2. We have s̄1 ≼ s1 ≡ ver(s1).
We also have s̄2 ≼ s2 ≼ fal(s1) because fal(s1) by definition is broader than all verifiable
statements incompatible with s1. Therefore s̄1, s̄2 ∈ D̄ are experimentally distinguishable.

To sum up, verifiable statements are the only ones that, perhaps under some simplifying
assumption, we can think of as tangible scientific objects (e.g. the idea that we can measure
mass with finite precision). From these we construct theoretical statements that represent our
idealizations (e.g. the infinitely precise value for the mass of a particle or the idea that said
value is a rational number expressed in a particular unit). And then there are statements that
are not even physically meaningful as they have no well defined experimental consequences.

18It will be a recurrent theme of this work to make a precise distinction between mathematical objects that
represent physical entities (e.g. verifiable statements), those that represent idealizations of physical entities
(e.g. theoretical statements) and those that do not have scientific standing (e.g. statements that are neither
verifiable nor theoretical).
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We have seen that the theoretical domain may contain more statements, but we want to
make it clear that it never contains more information. That is, if we knew which verifiable
statements were true and which weren’t, we would automatically know which theoretical
statements would be true or not. So it is not adding extra cases. It is essentially completing
the list of answers by adding a “no” if only “yes” can be experimentally verified and vice-versa.
To see that this is the case, we can show that a basis for an experimental domain D is also
a basis for its theoretical domain D̄. That is, all verifiable and theoretical statements can be
expressed as functions of the same basis. The difference is that a theoretical statement can
be a function of the negation of the element of a basis.

Proposition 1.46. The truth values of the statements of a basis B for an experimental
domain D are enough to determine the truth values for all statements in the associated
theoretical domain D̄. More formally, all statements in the theoretical domain D̄ can be
generated by negation, countable conjunction and countable disjunction from a basis B of
D.

Proof. By definition of basis, any verifiable statement within the experimental domain
D can be generated from B using only finite conjunction and countable disjunction. The
certainty may be generated through negation and disjunction from any verifiable statement
therefore B generates D which in turn generates D̄ by definition. This means that B,
through negation, countable conjunction and countable disjunction, generates all of D̄.

Having defined what a theoretical domain is, we can finally define what the possibilities
of a domain are: those statements that if known to be true determine the truth value of all
other statements.

Definition 1.47. A possibility for an experimental domain D is a statement x ∈ D̄
that, when true, determines the truth value for all statements in the theoretical domain.
Formally, x ≢ � and for each s ∈ D̄, either x ≼ s or x � s. The full possibilities, or simply
the possibilities, X for D are the collection of all possibilities.

A possibility represents a complete answer for a scientific question. Only one of them can
be true and one of them must be true since the theoretical domain contains all negations.
But how can we construct them? Suppose D is the experimental domain for animal species
identification. There will be a set of possible truth assignments for it. Suppose B ⊂ D is a
basis of statements, like “that animal has feathers”, “that animal has claws”, “that animal
has paws” and so on, that allows us to fully identify the animal species. Then each possible
assignment for the basis will correspond to one and only one assignment for the domain.
Consider a minterm, a conjunction where each statement appears once either negated or
not. For example, “that animal has feathers”∧“that animal has claws”∧¬“that animal has
paws”∧... . If that statement is true, it will determine the truth value of all the basis, it will
select one possible truth assignment for the whole domain. Then a possibility for the domain
is simply a minterm of a basis that corresponds to a possible assignment for the domain.

Proposition 1.48. Let D be an experimental domain. A possibility for D is any minterm
of a basis that is not impossible.
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Proof. Let B ⊆ D be a basis for D. Let x be a minterm of B. Any theoretical statement
s ∈ D̄ can be expressed as the disjunction of minterms of B by 1.26 and by 1.46. x is either
within the minterms needed to express s, or not. If it is, x∧ s ≡ x and therefore x ≼ s. If it’s
not, x∧¬s ≡ x and therefore x � s. Therefore a minterm is either narrower or incompatible
with all theoretical statements and, if it is not impossible, it is a possibility by definition.

Conversely, suppose x ∈ D̄ is a possibility. As it is a theoretical statement, it can be
expressed as a disjunction of minterms of a basis B. Suppose it is the disjunction of more
than one minterm. Then each minterm would be narrower than x, which cannot be. x
must be expressed by a single minterm. Therefore any possibility is a minterm.

Proposition 1.49 (No other possibilities). All statements that determine and only de-
termine the truth value of all statements in a theoretical domain D̄ are possibilities of D.
Formally, there is no statement s ∈ S that has all the properties of a possibility except that
s ∉ D̄.

Proof. Let x ∈ S be a statement that determines and only determines all truth values
of all statements in a theoretical domain D̄. This is equivalent to determining the truth
values and only the truth values of all elements of a basis B ⊆ D. As we can find a countable
basis, the statement x is equivalent to the countable conjunction of statements of B or their
negation. Therefore x ∈ D̄ as it is generated by the statements of the basis by negation
and countable conjunction. But a statement in D̄ that determines all truth values of the
statements in D̄ is a possibility by definition. Therefore x is a possibility.

There is one possibility that is often forgotten and sometimes needs special handling.
Suppose one is trying to identify an illness by going through a series of known markers. It
may happen that no match for the disease is found because we are dealing with a new kind
of illness. In the same way, we may fail to measure the value of a quantity because it lies
outside the sensitive range of our equipment. In other words, it may be possible that none of
our tests succeed and none of the verifiable statements is verified. We call this possibility the
residual because it’s what remains after we went through all the cases we already know.

Note, though, that the residual possibility does not exist for all domains. Suppose we
have a basket of fruit and we want to count how many whole apples there are. There can
only be a finite number of them, and we can successfully identify all finite numbers: there is
no “something else” to be found in this case.

Definition 1.50. The residual possibility x̊ for an experimental domain D is, if it exists,
the possibility that predicts that no test will be successful. Formally, let B ⊆ D be a basis
then x̊ = ⋀

e∈B
¬e if it is not impossible. An experimental domain is complete if it doesn’t

admit a residual possibility.

Definition 1.51. The established possibilities Ẋ =X∖{x̊} for an experimental domain
is the set of all possibilities excluding the residual possibility.

As we refine our understanding and techniques for a domain of knowledge, we may find
that the residual possibility actually corresponds to multiple cases that weren’t previously
cataloged. So, intuitively, it is better thought of as a bucket that contains all that is yet to be
experimentally discovered within the particular domain of knowledge. Because of its special
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nature, the residual possibility sometimes behaves differently than the other possibilities.
Therefore we will find that some theorems are more elegantly expressed in terms of the
established possibilities and some in terms of the full possibilities.

To sum up the mathematical structure of the domain, consider the following table:

D̄
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

D
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

B
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

X
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

b1 b2 ... s1 s2 ... s̄1 s̄2 ... x1 x2 x3 x4 ...

T F ... T F ... F F ... T F F F ...
T T ... T F ... F T ... F T F F ...
F F ... T T ... F F ... F F T F ...
T F ... F F ... T T ... F F F T ...

On the left we find the basis elements b ∈ B. From these, through finite conjunction and
countable disjunction we construct all verifiable statements s ∈ D. From these, through nega-
tion, countable conjunction and countable disjunction, we construct all theoretical statements
s̄ ∈ D̄. Within these we find the possibilities x ∈X. Each row corresponds to a possible truth
assignment for the domain. Each possibility is true in one and only one possible assignment.
The mathematical structure, then, is simply there to keep track of the logical relationships
between all the statements, which assignments are possible and which statements are verifi-
able.

With our definitions in mind, we can answer the following fundamental question: what is
the maximum number of possibilities that an experimental domain can have? In other words:
what is the maximum number of cases among which we can distinguish experimentally? As
we saw before, a possibility is a statement that defines the truth values of a basis. Since a
basis is countable, we can uniquely identify a possibility by a countable sequence of true or
false. Note that a real number expressed in a binary basis (e.g. 0.10110001...) will also be
uniquely identified by such a sequence: the cardinality of the possibilities is at most that of
the continuum.

Theorem 1.52. The possibilities X for an experimental domain D have at most the car-
dinality of the continuum.

Proof. Let B = {ei}∞i=1 ⊆ D be a countable basis. Let 2N denote the set of infinite binary
sequences. We define the function F ∶X → BN such that F (x) = {F (x)i}∞i=1 is given by:

F (x)i =
⎧⎪⎪⎨⎪⎪⎩

true x � ei

false x � ei

For each x ∈ X we have x =
∞

⋀
i=1

¬F (x)iei. Suppose x1 ≠ x2, then F (x1)i ≠ F (x2)i for some

i, therefore F is injective. We then have ∣X ∣ ≤ ∣2N∣ = ∣R∣. X has at most the cardinality of
the continuum.
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This means we have an upper bound on how many cases can be distinguished experimen-
tally: only up to the continuum. We are not going to be able to tell apart experimentally
more possibilities than those. This result gives us a basic requirement for any mathematical
object we want to use in a scientific theory: if the cardinality is greater than the continuum, it
cannot have a well defined experimental meaning. For example, while the set of all continuous
functions between real numbers has the cardinality of the continuum, the set of all functions
(including discontinuous ones) has greater cardinality. We can already conclude that the first
set may be useful to represent physical objects and the second may not.

As we are looking into the cardinality of the possibilities of a domain, it should not be
surprising that the only way we can have infinitely many possibilities is if we are given infinitely
many verifiable statements. As each verifiable statement can distinguish between two cases
(i.e. true or false), we need infinitely many of these distinctions to reach infinitely many cases.

Proposition 1.53. Let DX be an experimental domain. The following are equivalent:

1. the set of possibilities is finite
2. the experimental domain contains finitely many verifiable statements
3. there exists a finite basis

Proof. To prove 2 from 1, let DX be an experimental domain and X its possibili-
ties. Suppose X is finite. Since any statement in DX can generated from X using finite
conjunction, DX must be finite as well.

To prove 3 from 2, let DX contain finitely many verifiable statements. Then a basis
will consist of finitely many statements as it is a subset of the domain.

To prove 1 from 3, suppose B is a finite basis for the domain. Since the possibilities are
minterms of the basis, we have ∣X ∣ ≤ ∣2∣B∣∣. Since the basis is finite, X is finite as well.

We have now presented the fundamental objects of our general mathematical theory of
experimental science. In our framework, a “scientific theory” or a “scientific model” is an
experimental domain: a set of statements, what they mean and how to verify them experi-
mentally.

The starting point is often a basis: a set of verifiable statements which defines all the
domain knowledge that we can gather experimentally. The content of the statements deter-
mines what combinations can be true at the same time, which defines the possibilities for
our domain. Everything in the domain is grounded within the verifiable statements: there
is nothing else in it. This also maps well to the practice of most scientific fields, where one
defines states and other physical objects based on what can be measured.

As we’ll see later, some verifiable statements may be idealizations. For example, we may
assume that a quantity can be measured with arbitrary level of precision, which we know
not to be strictly true. We may assume a volume of gas to have a well defined temperature,
which we know not be true if it is not at equilibrium. This type of simplification makes a
domain applicable only within the realm of validity of those idealizations, but does not change
the formal structure we have identified here. In fact, the focus of much of this work will be
deriving the details of different experimental domains under different physical assumptions.

The main point of our framework is that this conceptual structure is inescapable once we
set the principle of scientific objectivity. We will always need a set of statements and a way
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to test them and, if we are given those, we have all we need. These elements are necessary
and sufficient to be able to do science. And by being clear about which statements can be
considered physically meaningful, and which are an idealization, we can then be more precise
on the physical status of each component of a particular scientific theory.

1.4 Topological spaces

Now that we have defined what experimental domains are, we want to explore the link between
them and some fundamental mathematical structures. The main result of this section is
that an experimental domain provides a natural topology for its possibilities. Each verifiable
statement can be seen as the disjunction of a set of possibilities. Performing finite conjunction
and countable disjunction of verifiable statements means performing finite union and countable
intersection on those sets of possibilities.

Topological spaces were developed in the first half of the 1900s as a generalization of
metric spaces. The idea is to define a notion of closeness without having to define an actual
distance.19 Other branches of math (e.g. metric spaces, differential geometry, Lie algebras)
now see their foundation on topological spaces, which therefore play a very important role in
mathematics as a whole. In our case, this notion of closeness will map to how hard it is to
tell possibilities apart. That is, possibilities that are topologically closer are more difficult to
distinguish experimentally.

Let’s first review what a topology is. The general idea is that we have a set X of el-
ements, which we call points, and a collection of subsets of X such that it is closed under
finite intersection and arbitrary union, contains the empty set and contains the whole set
X. For example, suppose X = {1,2,3} then {{},{1},{2},{1,2,3}} is not a topology while
{{},{1},{2},{1,2},{1,2,3}} is. The first one is missing the union of {1} and {2}.

Definition 1.54. Let X be a set. A topology on X is a collection TX of subsets of X
closed under finite intersection and arbitrary union such that it contains X and ∅. A
topological space is a tuple (X,TX) of a set and a topology defined on it.

Mathematicians designed this abstract mathematical structure because it is a useful and
general tool to study the notion of continuity. It also happens that all the mathematical
structures used in science are topological spaces. Why is that? What is it that topological
spaces capture?

Let’s go back to our verifiable statements and possibilities. For example, consider s1 =“the
mass of the photon is less than 10−10 eV”. This can be expressed as s1 = ⋁

0≤x<10−10
“the mass

of the photon is precisely x eV”: the precise value must be in the given range of possibilities.
Consider s2 =“the mass of the photon is greater than 10−20 eV”= ⋁

x>10−20
“the mass of the photon

is precisely x eV”. The conjunction is the intersection of the possible values: s1 ∧ s2 =“the
mass of the photon is between 10−20 and 10−10 eV”= ⋁

10−20<x<10−10
“the mass of the photon is

19In science and engineering, one talks about topology also when discussing the structure of a molecule,
an electronic circuit or a computer network. These types of structures (i.e. nodes connected by vertices) are
studied by graph theory and should not be confused with point-set topology.
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precisely x eV”. The disjunction is the union of the possible values: s1 ∨ s2 =“the mass of the
photon can be anything”= ⋁

x≥0
“the mass of the photon is precisely x eV”.

This is something that works in general. In Proposition 1.26 we saw that, if a statement
is a function of other statements, it can be expressed as the disjunction of minterms of
the arguments. A verifiable statement is a function of basis, so it can be expressed as the
disjunction of minterms of a basis. But we have also seen that the minterms of a basis are the
possibilities, so each verifiable statement can be expressed as the disjunction of possibilities.

Therefore each statement in the experimental domain defines a set of possibilities, which
we call a verifiable set. Since certainty and impossibility are in the domain, the empty set
and the full set of possibilities are verifiable sets. Since we can take finite conjunction and
countable disjunction of verifiable statements, we can take finite intersection and countable
union of verifiable sets. The collection of all verifiable sets forms a topology on the set of
possibilities.

Definition 1.55. Let D be an experimental domain and X its possibilities. We define the
map U ∶ D → 2X that for each statement s ∈ D returns the set of possibilities compatible
with it. That is: U(s) ≡ {x ∈ X ∣x � s}. We call U(s) the verifiable set of possibilities
associated with s.

Proposition 1.56. A statement s ∈ D is equivalent to the disjunction of the possibilities
in its verifiable set U(s). That is, s ≡ ⋁

x∈U(s)
x.

Proof. First we show each statement is the disjunction of some set of possibilities. Let
D be an experimental domain, s ∈ D a verifiable statement and B ⊆ D a basis. Since s is a
function of the basis, it can be expressed as a disjunction of minterms of B. The minterms
of B that are impossible can be ignored since s∨� ≡ s. But the minterms of B that are not
impossible are possibilities of D so s = ⋁

x∈U
x for some U ⊆X.

Now we show it is the disjunction of its verifiable set. Let x ∈ X be a possibility and
consider x ∧ s. If x ∈ U then x ∧ s = x ∧ ⋁

x̂∈U
x̂ = ⋁

x̂∈U
(x ∧ x̂) ≡ x ≢ �. Therefore x � s. If x ∉ U

then x ∧ s ≡ �. Therefore x � s. This means U = U(s) as it contains and only contains all
the possibilities compatible with s.

Proposition 1.57. Let X be the set of possibilities for an experimental domain D. X has
a natural topology given by the collection of all verifiable sets TX = U(D).

Proof. The verifiable sets for the certainty and the impossibility correspond to the full
set and empty set respectively. Formally, U(⊺) = {x ∈ X ∣x � ⊺} = X while U(�) = {x ∈
X ∣x � �} = ∅. Therefore X,∅ ∈ U(D) since ⊺,� ∈ D.

The finite intersection of verifiable sets corresponds to the verifiable set of the finite
conjunction and therefore it is a verifiable set. Formally, U(s1∧s2) = {x ∈X ∣x � (s1∧s2)} =
{x ∈X ∣x � s1 andx � s2} = {x ∈X ∣x � s1} ∩ {x ∈X ∣x � s2} = U(s1) ∩U(s2).

The countable union of verifiable sets corresponds to the verifiable set of the countable
disjunction and therefore it is a verifiable set. Formally, U(s1 ∨ s2) = {x ∈ X ∣x � (s1 ∨
s2)} = {x ∈ X ∣x � s1 or x � s2} = {x ∈ X ∣x � s1} ∪ {x ∈ X ∣x � s2} = U(s1) ∪ U(s2).
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This generalizes to countable disjunctions. Arbitrary disjunctions can be re-expressed as
countable disjunctions, since any verifiable statement can always be expressed in terms of
a countable basis.

The collection TX = U(D) is therefore a topology by definition since it satisfies all its
properties.

Mainly for historical reasons, the sets in a topology are called open sets. The complements
of open sets are called closed sets. In metric spaces, such as the Euclidean space with the
standard topology, these will map to the standard notion of open and closed intervals. But,
in general, they do not and this may lead to confusion. For example, if we take the integers
with their standard topology, any subset is both open and closed.

Given that we are only interested in the natural topologies of possibilities, we are going
to refer to the sets in our topology as verifiable sets and we will occasionally call falsifiable
sets their complements. For example, when counting apples a subset of the integers is both
verifiable and falsifiable: we can test whether the apple count is within or outside that set of
possible numbers. While this terminology does not follow math convention, we find it more
intuitive and meaningful in the context of this work.

We can also re-express the semantic relationships between statements in terms of set
operations on the verifiable sets. For example, “that animal is a cat” is narrower than “that
animal is a mammal” because the set of possibilities for which the first is true is a subset of
the possibilities for which the second is true. Conversely, “that animal is a cat” and “that
animal is a dog” are incompatible because the set of possibilities in which both are true is
empty.

In the following table we summarize how statement operations and relationships are ex-
pressed in terms of operations and relationships between sets of possibilities.

Statement relationship Set relationship

s1 ∧ s2 (Conjunction) U(s1) ∩U(s2) (Intersection)
s1 ∨ s2 (Disjunction) U(s1) ∪U(s2) (Union)

¬s (Negation) U(s)C (Complement)
ver(s) (Verifiable part) int(U(s)) (Interior)
fal(s) (Falsifiable part) ext(U(s)) (Exterior)
und(s) (Undecidable part) ∂U(s) (Boundary)
s1 ≡ s2 (Equivalence) U(s1) = U(s2) (Equality)
s1 ≼ s2 (Narrower than) U(s1) ⊆ U(s2) (Subset)
s1 ≽ s2 (Broader than) U(s1) ⊇ U(s2) (Superset)
s1 � s2 (Compatibility) U(s1) ∩U(s2) ≠ ∅ (Intersection not empty)

Table 1.4: Correspondence between statement operators and set operators.

Let’s review the definition of basis and sub-basis for a topology: a collection of sets from
which we can generate the whole topology through finite intersection and countable union
(for a sub-basis) or just through countable union (for a basis). Bases are important since
they are often used in proofs and calculations. Moreover, many properties of topologies can
be shown to be equivalent to properties of one of their bases. Countability, and in particular
second-countability, is one such property which characterizes the number of verifiable sets in
the topology.
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Definition 1.58. A collection B ⊆ TX of verifiable sets of X is a sub-basis if every
verifiable set in X is the union of finite intersections of elements of B. It is a basis if
every verifiable set in X is the union of elements of B.

Definition 1.59. A topology for X is second-countable if it admits a countable basis.

There is a link between the basis of an experimental domain and a sub-basis of a topology.
If every statement in the experimental domain can be constructed from a basis through finite
conjunction and countable disjunction, then each corresponding verifiable set can be generated
through intersection and union of the verifiable set corresponding to the basis. Therefore the
verifiable set corresponding to the basis of the experimental domain forms a sub-basis in the
topology. Since experimental domains must have a countable basis to make sure we can test
any verifiable statement given enough time, the topologies we’ll be interested in must be
second-countable.

Proposition 1.60. Let X be the set of possibilities of an experimental domain D. Let
B ⊆ D be a basis for the domain, then the collection of verifiable sets U(B) ∪ {X} forms a
sub-basis for the natural topology of X.

Proof. Since every verifiable statement of a domain can be generated by finite con-
junction and countable disjunction from a basis B ⊆ D, its corresponding verifiable set
can be generated by finite intersection and countable union from the verifiable sets U(B)
corresponding to the basis. Note that the certainty, though, is not necessarily the union
of U(B): if the domain is not complete, the residual possibility is not contained in any
verifiable sets. Therefore U(B)∪{X} can generate all verifiable sets, including the one for
the certainty, and is a sub-basis.

Proposition 1.61. The natural topology for the possibilities of an experimental domain is
second-countable.

Proof. Since each experimental domain admits a countable basis, its verifiable sets
form a countable sub-basis for the natural topology. We can close the sub-basis over finite
intersection, forming a countable basis for the topology. The natural topology is therefore
second-countable as it admits a countable basis.

Another important property to classify topological spaces is the degree of separation of
their elements: how well one can use verifiable sets to tell points and sets apart. A Kol-
mogorov, or T0, space is one in which for every pair of points there is always a verifiable set
that contains one but not the other. This property is significant because it allows all points
to be distinguished through verifiable sets. A Fréchet, or T1, space is one in which for every
pair of points we can find two verifiable sets each containing only one. In a Hausdorff, or T2,
space the two verifiable sets containing the points are disjoint. This implies the uniqueness
of limits of sequences of points.

Definition 1.62. A topology for X is Kolmogorov (or T0) if for every two elements
x1, x2 ∈ X there exists a verifiable set U ∈ TX containing one element but not the other.
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That is: either x1 ∈ U while x2 ∉ U or x1 ∉ U while x2 ∈ U .

Definition 1.63. A topology for X is Fréchet (or T1) if for every two elements x1, x2 ∈X
there exist two, not necessarily disjoint, verifiable sets U1, U2 ∈ TX each containing only
one element. That is: x1 ∈ U1 and x2 ∈ U2.

Definition 1.64. A topology for X is Hausdorff (or T2) if for every two elements x1, x2 ∈
X there exist two disjoint verifiable sets U1, U2 ∈ TX each containing one element. That
is: U1 ∩U2 = ∅, x1 ∈ U1 and x2 ∈ U2.

Remark. Note that T2 implies T1 which in turn implies T0.

How do these properties relate to experimental domains? Consider two possibilities for a
domain, for example “that is a cat” and “that is a swan”. We can always find a verifiable
statement, such as “that animal has feathers”, that we can use to distinguish one possibility
from the other. This means that, given two different possibilities, we can always find a verifi-
able set that contains one and not the other: the natural topology for any set of possibilities
is always T0.

Now suppose two possibilities are approximately verifiable as we defined in Definition
1.38. For example, “the mass of the photon is exactly 0 eV” or “the mass of the photon is
exactly 10−20 eV”. We can find two verifiable statements “the mass of the photon is less than
10−25 eV” and “the mass of the photon is more than 10−25 eV” each compatible with only
one possibility. This means that, given two approximately verifiable possibilities, we can find
two verifiable sets each containing only one possibility: if all possibilities are approximately
verifiable then the natural topology is T1.

Now suppose two possibilities are experimentally distinguishable as we defined in Defini-
tion 1.44. Then, by 1.45, we can find two disjoint approximations. In the example before,
the two verifiable statements were in fact incompatible. This means that, given two approxi-
mately verifiable possibilities, we can find two disjoint verifiable sets each containing only one
possibility: if all possibilities experimentally distinguishable then the natural topology is T2.

Proposition 1.65. The natural topology of a set of possibilities is Kolmogorov (or T0).
Proof. Let X be the set of possibilities for an experimental domain D. Let x1, x2 ∈ X

be two distinct possibilities. Each of them can be expressed as a minterm of a basis B ⊆ D.
Since the two possibilities are distinct, there must exist a verifiable statement e ∈ B that
appears negated in one conjunction but not the other. That is, e is compatible with only
one possibility. Since the verifiable set associated with a verifiable statement contains only
the possibilities compatible with said statement, the verifiable set of e either contains x1

or x2 but not both. The topology is therefore Kolmogorov (or T0).

Proposition 1.66. The natural topology of a set of possibilities is Fréchet (or T1) if and
only if all possibilities are approximately verifiable.

Proof. Suppose all possibilities in X for an experimental domain DX are approximately
verifiable. Let x1, x2 ∈ X be two possibilities, then we can find two sequences of verifiable

statements {s1i }∞i=1,{s2j}∞j=1 ∈ DX such that x1 =
∞

⋀
i=1

s1i and x2 =
∞

⋀
j=1

s2j . We can assume the
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sequences are monotone with respect to narrowness, that is s1i+1 ≼ s1i , as we can always create
a monotone sequence from one that is not by taking the sequence of finite conjunction,

that is ŝ1k =
k

⋀
i=1

s1i . If x1 ≠ x2, then x1 ∧ x2 ≡ � since different possibilities are incompatible.

Therefore we must have x1 ∧ s2j ≡ � and s1i ∧ x2 ≡ � from some i, j ≥ 1 or the limits would

not be incompatible. In terms of verifiable sets we have x2 ∉ U(s1i ) and x1 ∉ U(s2j). For any
two distinct possibilities we can find two verifiable sets each containing one: the natural
topology is T1.

Conversely, suppose the natural topology TX for the possibilities X for an experimental
domain DX is T1. Let x ∈ X be a possibility. Consider the collection, not necessarily
countable, of all verifiable sets {Ui}i∈I ⊂ TX such that they contain x. Consider their
intersection Ux = ⋂

i∈I
Ui. It will contain x since all Ui contain x. It will not contain anything

else: since the topology is T1, for every other possibility x̂ there is always an open set
Ui that does not contain it. Therefore Ux = {x}. Because the natural topology is second
countable, we can find a countable basis B and rewrite the arbitrary intersection into

{x} =
∞

⋂
i=1
Vi a countable intersection of elements Vi ∈ B of the basis. Let {si}∞i=1 be the

sequence of verifiable statements such that U(si) = Vi for every i. Then x =
∞

⋀
i=1

si which

means x is approximately verifiable.

Proposition 1.67. The natural topology of a set of possibilities is Hausdorff (or T2) if
and only if all possibilities are pairwise experimentally distinguishable.

Proof. Suppose all possibilities in X for an experimental domain DX are pairwise
experimentally distinguishable. Then, by 1.45, given two possibilities x1, x2 ∈ X we can
find two verifiable statements s1, s2 ∈ DX such that s1 � s2, x1 ≼ s1 and x2 ≼ s2. In terms of
verifiable sets we have U(s1) ∩U(s2) = ∅, x1 ∈ U(s1) and x2 ∈ U(s2). The topology is T2.

Conversely, suppose the natural topology TX for the possibilities X for an experimental
domain DX is T1. Given two possibilities x1, x2 ∈X we can find two verifiable sets U1, U2 ∈
TX such that U1 ∩ U2 = ∅, x1 ∈ U1 and x2 ∈ U2. Since U1, U2 ∈ TX , we can find two
corresponding verifiable statements s1, s2 ∈ DX such that U(s1) = U1 and U(s2) = U2. We
have s1 � s2, x1 ≼ s1 and x2 ≼ s2 and by 1.45 the possibilities are pairwise experimentally
distinguishable.

1.5 Sigma-algebras

In the same way that experimental domains find a natural mathematical representation as
topological spaces, theoretical domains find a natural mathematical representation in σ-
algebras. The main result of this section is that a theoretical domain provides a natural
σ-algebra on its possibilities.

Like topologies, σ-algebras are fundamental in mathematics as they allow us to construct
measures (i.e. assigning sizes to sets), limits for sequences of sets and probability spaces. It
is again fitting that theoretical domains are associated to such a fundamental mathematical
structure.

Let’s first review what a σ-algebra is. The general idea is that we have a set X of
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elements which we call points, and we have a collection of subsets of X such that it is
closed under complement and countable union, contains the empty set and contains the whole
set X. For example, suppose X = {1,2,3} then {{},{1},{1,2,3}} is not a σ-algebra while
{{},{1},{2,3},{1,2,3}} is. The first one is missing the complement of {1}.

Definition 1.68. Let X be a set. A σ-algebra on X is a collection ΣX of subsets of X
closed under complement and countable union such that it contains X.

Note that σ-algebras are also closed under countable intersections, since these can be
expressed in terms of complements and countable unions.

In the previous section we saw how each verifiable statement can be expressed as the
conjunction of a set of possibilities, how the operations on statements can be expressed as
operations on the verifiable sets and how all the verifiable sets form a topology. The same
is true for theoretical statements, with the only difference being that we will end up with a
collection of sets that is closed under complement and countable union since the theoretical
domain is closed under negation and countable disjunction.

Definition 1.69. Let D̄ be a theoretical domain and X its possibilities. We define the
map A ∶ D̄ → 2X that for each theoretical statement s ∈ D̄ returns the set of possibilities
compatible with it. That is, A(s) ≡ {x ∈ X ∣x � s}. We call A(s) the theoretical set of
possibilities associated with s

Proposition 1.70. Let X be the set of possibilities for a theoretical domain D̄. X has a
natural σ-algebra given by the collection of all theoretical sets ΣX = A(D̄).

Proof. The theoretical sets for the certainty and the impossibility correspond to the
full set and empty set respectively. Formally, A(⊺) = {x ∈X ∣x � ⊺} =X while A(�) = {x ∈
X ∣x � �} = ∅. Therefore X,∅ ∈ A(D̄) since ⊺,� ∈ D̄.

The complement of a theoretical set corresponds to the theoretical set of the negation
and therefore it is a theoretical set. Formally, A(s)C = {x ∈ X ∣x � s} = {x ∈ X ∣x � ¬s} =
A(¬s).

The countable union of verifiable sets corresponds to the verifiable set of the countable
disjunction and therefore it is a theoretical set. Formally, A(s1 ∨ s2) = {x ∈X ∣x � s1 ∨ s2} =
{x ∈X ∣x � s1 or x � s2} = {x ∈X ∣x � s1}∪ {x ∈X ∣x � s2} = A(s1) ∪A(s2). This generalizes
to countable disjunctions.

The collection ΣX = A(D̄) is therefore a σ-algebra by definition since it satisfies all its
properties.

There is also a special link between topologies and σ-algebras. As one may want to
construct measures and probability spaces on topological spaces, there is a standard way to
construct a σ-algebra from a topology. This object, called Borel algebra, is the smallest σ-
algebra that contains all verifiable sets defined by the topology. The σ-algebra defined by
a theoretical domain is none other than the Borel algebra of the topology defined by the
corresponding experimental domain.
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Definition 1.71. Let (X,T) be a topological space. Its Borel algebra is the collection
ΣX of subsets of X generated by countable union, countable intersection and complement
from the verifiable sets.

Proposition 1.72. The natural σ-algebra for a set of possibilities is the Borel algebra of
its natural topology.

Proof. Since the theoretical domain can be generated by a basis of the experimental
domain, the natural σ-algebra can be generated by a sub-basis of the natural topology. This
means that it is also generated by countable union, countable intersection and negation
from the verifiable sets of the natural topology.

This fundamental link between experimental domains and topology on one side and the-
oretical domains and σ-algebra on the other is important for multiple reasons.

From a practical standpoint, it guarantees that these mathematical tools can always be
used in science. Since experimental and theoretical domains are general constructs, any
branch of scientific investigation can use techniques and results from topology and σ-algebras
for calculations or for characterizing the domain at hand.

From a conceptual standpoint it provides a Rosetta stone, i.e a way to translate, between
the mathematical concepts and the scientific ones. It gives a precise scientific meaning to the
mathematical tools and everything built on top of them. Every single step in a calculation,
every single argument in a proof can be given a clear, and possibly insightful, physical meaning.
It grounds the abstract mathematical language in more concrete scientific objects. This in
turn helps clarify the science described by common mathematical tools, unearthing possible
hidden assumptions or simplifications about the physical systems being studied.

This connection explains why these mathematical tools have found such successful appli-
cation in the physical sciences.

1.6 Decidable domains

We conclude this chapter by analyzing decidable domains, those for which we can experimen-
tally test both the truth and the falsehood of all statements. For example, the domain for
animal identification and the domain for the amount of money in my poket can be considered
decidable as we can typically tell experimentally whether “this animal has whiskers” or not,
or whether “there is more than one dollar and fifty cents in my pocket” or not.

Decidable domains have special characteristics and are easier to study. Since we can verify
the negation, any theoretical statement is also verifiable. And since all theoretical statements
are verifiable, so are the possibilities. That is, we can verify that “this animal is a cat”
and that “there are two dollars and thirty cents in my pocket”. As all statements can be
expressed as a disjunction of possibilities, the possibilities themselves form a countable basis.
For example, “there is more than one dollars and fifty cents in my pocket” can be expressed
as the disjunction of the appropriate statements of the form “there are x dollars and y cents
in my pocket”.

Definition 1.73. An experimental domain DX is decidable if all statements in the domain
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are decidable. Formally, for every s ∈ DX we have ¬s ∈ DX .

Proposition 1.74. Let DX be an experimental domain. The following are equivalent:

1. the experimental domain is decidable
2. the experimental domain and its theoretical domain coincide
3. all possibilities are verifiable
4. the possibilities form a countable basis.

Proof. To prove 2 from 1, suppose DX is a decidable experimental domain. As DX is
decidable, it is already closed under negation and therefore all statements in its theoretical
domain D̄X are already in DX .

To prove 3 from 2, suppose DX coincides with its theoretical domain D̄X . As each
possibility is a theoretical statement, it is also a verifiable statement.

To prove 4 from 3, suppose the possibilities are verifiable. Note that the possibilities
can generate all other statements through disjunction. To show X is countable, consider
a countable basis B ⊆ DX . Because the possibilities are verifiable statements, they can
be generated from B by finite conjunction and countable disjunction. Moreover, since the
possibilities are the narrowest statements that are not impossible, they can be generated
from B using finite conjunction only. Since B is countable and X is generated by B through
finite conjunction, X can be at most countable. Therefore X is a countable basis.

To prove 1 from 4, suppose the possibilities X form a countable basis. Then each pos-
sibility is verifiable and so is their countable union. The negation of a verifiable statement
can be expressed as the countable union of possibilities, and is therefore verifiable. All
statements in the experimental domain are decidable and therefore the domain is decid-
able.

As the possibilities for a decidable domain must form a countable basis, their cardinality
can’t be greater than countable. That is: only domains that are non-decidable can have
possibilities with cardinality of the continuum. In this sense they are more constrained and
simpler to study.

Mathematically, the natural topology corresponds to the discrete topology: the one for
which any subsets of the possibilities is a verifiable set. That is, the topology is simply the
set of all possible sets of possibilities. The cardinality of the possibility is therefore enough to
determine the topology of the space, which means that one number is enough to characterize
the space.

Definition 1.75. A topology TX on a set X is called discrete if it contains every subset
of X.

Theorem 1.76 (Decidability is discreteness). The natural topology of the possibilities X
for a domain DX is discrete if and only if the domain is decidable.

Proof. Suppose DX is decidable. Let U ⊆X be a subset of possibilities. The statement
s = ⋁

x∈U
x is generated from X through countable disjunction. Since DX is decidable, X is
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a countable basis and s is verifiable. Therefore U is a verifiable set and it is contained in
the natural topology. The natural topology of X is discrete by definition.

Now suppose DX is such that the natural topology for its possibilities X is discrete.
Let s = ⋁

x∈U
x be a statement. Since the topology is discrete, U is part of the topology and

s is verifiable. Consider its negation ¬s = ⋁
x∈UC

x. Since the topology is discrete, UC is also

part of the topology and ¬s is verifiable. This means s is decidable. Since every statement
in DX is decidable, the domain is decidable.

Note, though, that discrete does not imply finite or vice-versa. The domain for extra-
terrestrial life is finite but is not decidable as we cannot verify that “there is no extra-terrestrial
life”. The domain for the amount of money in my pocket, instead, is decidable but not
necessarily finite as I could potentially have an arbitrarily large amount.

1.7 Summary

In this first chapter we have laid down the foundations for our general mathematical theory
of experimental science. We have seen how it is grounded in the logic of verifiable statements,
which is more limited than the logic of pure statements as it has to deal with the practical
constraints introduced by the termination of the tests.

We saw that we can group verifiable statements into experimental domains which must
have a countable basis to allow us to test any statement within an indefinite amount of time.
We saw how to construct theoretical domains to find all the theoretical statements that we
can use as predictions. And we saw how the possibilities are those statements that, if true,
give a complete prediction for all statements in the domain.

We have seen that, because of the disjunctive normal form, each verifiable and theoretical
statement is equivalent to a set of possibilities and how logic operations and relationships
become set operations and relationships. As such, the experimental and theoretical domains
respectively provide a natural topology and σ-algebra for the possibilities.

What we have ended up with is a conceptual framework that captures the necessary
elements of scientific practice and codifies them into a symbolic representation with a well
defined meaning. There is no guesswork as to what the points of our spaces are: they are the
possibilities, statements that provide a complete prediction for the domain. We do not have
to provide an “interpretation” as to what the sets of a topology represent: they correspond to
verifiable statements. All the objects have a clear definition and meaning from the start, we
know which ones are necessary and to what extent they are physical or idealized. This will
provide a much more solid foundation to the rest of the work, which will ultimately allow us
to understand much better the fundamental physical theories and the connections between
them and to other areas of scientific thought.



1.7. SUMMARY 45



46 CHAPTER 1. VERIFIABLE STATEMENTS AND EXPERIMENTAL DOMAINS

1.8 Reference sheet
Name Meaning

B Boolean domain the set of possible truth values
i.e. B = {true,false}

S logical context a set of statements with well defined logical
relationships

s ∈ S statement an assertion with a well defined truth value

truth ∶ S → B the truth function returns whether a statement is true or not

AS ⊆ BS possible assignments the logically consistent truth value combina-
tions that can be assigned to the statements

⊺ certainty a statement that can only be true (i.e. it is true
in all possible assignments)

� impossibility a statement that can never be true (i.e. it is
false in all possible assignments)

contingent statement a statement that can be either true or false
depending on the possible assignment

¬s negation (logical NOT) the statement whose truth value is always op-
posite

s1 ∧ s2 conjunction (logical AND) the statement that is true only if all statements
are true

s1 ∨ s2 disjunction (logical OR) the statement that is true if any of the state-
ments is true

s1 ≡ s2 equivalence whether each statement is a logical conse-
quence of the other (i.e. they must have the
same value in every possible assignment)

s1 ≼ s2 narrower than whether the first statement is more specific
than the second (i.e. in every possible assign-
ment, if the first is true than the second must
be also true)

s1 ≽ s2 broader than whether the second statement is narrower than
the first

s1 � s2 compatibility whether both statement can be true at the
same time (i.e. there is a possible assignment
in which they are both true)

s1 á s2 independence whether both statement can be true at the
same time (i.e. there is a possible assignment
for each combination of their possible truths)

minterm a conjunction where each statement appears
once, either negated or not

s ∈ Sv verifiable statement a statement that can be validated experimen-
tally

D experimental domain a set of verifiable statement that can be tested
in an indefinite amount of time (i.e. a set of
statements closed under finite conjunction and
countable disjunction, that precisely contains
the certainty, the impossibility and a set of ver-
ifiable statements generated by a countable ba-
sis)

B ∈ D basis a set of verifiable statements from which all
others can be constructed
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Name Meaning

D̄ theoretical domain the set of all predictions for an experimental
domain

approximately verifiable when a statement is not verifiable but is the
limit of a sequence of statements that are

X possibilities of a domain those predictions that sets the value of all ver-
ifiable statements of a domain

ẋ established possibility a possibility for which at least a verifiable state-
ments is true (i.e. it can be established experi-
mentally)

x̊ residual possibility if it exists, the possibility for which all ver-
ifiable statements are false (i.e. the remain-
ing case that cannot be established experimen-
tally)





Chapter 2

Domain combination and
relationships

We continue our investigation of the fundamental mathematical structures for experimental
science by studying what happens when we have more than one experimental domain. We
will define experimental relationships between experimental domains, which capture ei-
ther causal or inference relationships between them. We will see that these correspond to
continuous functions in the natural topology.

We will take two or more domains and merge all the experimental information that can be
gathered through them into a combined domain. We will study how the set of possibilities of
the combined domain depends not only on the original domains, but also on the relationships
between them. These will also determine the natural topology that can vary from the product
topology all the way to the disjoint union topology.

We will also show that experimental relationships, under suitable conditions, can them-
selves be verified experimentally by constructing the relationship domain for which its
possibilities correspond to the possible relationships.

2.1 Dependence and equivalence between domains

The first thing we want to be able to characterize, when dealing with more than one domain,
is when there exists a relationship between them. For example, consider the domains for the
temperature and height of a mercury column or the domains for the temperature and density
of water. How do we express, in this framework, the fact that these domains are connected?

We have two ways to define these relationships between domains. The first is in terms of
inference: any measurement on the height of a mercury column is an indirect measurement
on its temperature; any experimental test on the density of water is an indirect experimental
test on its temperature. The second is in terms of causes: the height of the mercury column
depends on its temperature; the density of water is a function of its temperature. The main
result of this section is to show that these definitions are equivalent and that the dependent
domain can be seen as a sub-domain of the other.

Suppose DX represents the domain for the temperature of a mercury column while DY
represents the domain for its height. Since we know that an increase in temperature makes
the metal expand, we can infer the temperature of the mercury column by looking at its
height. For example, if we verify that “the height of the mercury column is between 24 and

49
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25 millimeters” we will be able to infer that “the temperature is between 24 and 25 Celsius”.
That is, given a verifiable statement sY we have another verifiable statement sX that is going
to be true if and only if the first one is, that is sY ≡ sX .

Note that the inference is between verifiable statements and not intervals. For example,
the verifiable statement “the water density is between 999.8 and 999.9 kg/m3” will correspond
to “the water temperature is between 0 and 0.52 Celsius”∨“the water temperature is between
7.6 and 9.12 Celsius” as water is most dense at 4 Celsius. The disjunction of verifiable
statements is still a verifiable statement so we are still inferring one verifiable statement from
the other. For each verifiable statement in DY we can find a verifiable statement in DX that
is verified if and only if the first is. That is: an inference relationship is a map from DY to
DX that preserves equivalence.

Definition 2.1. An inference relationship between two experimental domains estab-
lishes that testing a verifiable statement in one means testing a verifiable statement in the
other. Formally, an inference relationship between two experimental domains DX and DY
is a map r ∶ DY → DX such that r(sY ) ≡ sY . In other words: it is an equivalence-preserving
map between experimental domains.

An inference relationship is essentially an injection that preserves equivalence instead
of identity. In terms of equality, the two statements “the height of the mercury column is
between 24 and 25 millimeters” and “the temperature is between 24 and 25 Celsius” are
different, but they are the same in terms of equivalence. In this sense, the dependent domain
is already contained within the other domain. This means we can define domain inclusion
and equivalence based on inference relationships.

Definition 2.2. An experimental domain DY is dependent on another experimental do-
main DX , noted DY ⊆ DX , if there exists an inference relationship r ∶ DY → DX .

Corollary 2.3. Let DX be an experimental domain. Let DY be a subset of statements of
DX that form an experimental domain (i.e. contains impossibility, certainty and is closed
under finite conjunction and countable disjunction). Then DY ⊆ DX .

Proof. Let ι ∶ DY → DX be the inclusion map. This is an inference relationship since
ι(sY ) = sY ≡ sY therefore DY depends on DX .

Definition 2.4. Two experimental domains DX and DY are equivalent DX ≡ DY if DX
depends on DY and vice-versa.

Corollary 2.5. Domain equivalence satisfies the following properties:

� reflexivity: D ≡ D
� symmetry: if DX ≡ DY then DY ≡ DX
� transitivity: if DX ≡ DY and DY ≡ DZ then DX ≡ DZ

and is therefore an equivalence relationship.
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Proof. For reflexivity, D is a subset of D that is an experimental domain, therefore
D ⊆ D by 2.3. Equivalence follows by symmetry.

For symmetry, suppose DX ≡ DY , then DY ⊆ DX and DX ⊆ DY and therefore DY ≡ DX .
For transitivity, suppose DX ≡ DY and DY ≡ DZ . Then we have the following inference

relationships: rXY ∶ DX → DY , rY X ∶ DY → DX , rY Z ∶ DY → DZ , rZY ∶ DZ → DY . We can
define the function compositions rXZ = rY Z ○rXY and rZX = rY X ○rZY . These are inference
relationships since sX ≡ rXY (sX) ≡ rY Z(rXY (sX)) and sZ ≡ rZY (sZ) ≡ rY X(rZY (sZ)).
Therefore DX ≡ DZ .

It should be evident that we cannot impose inference relationships between any two do-
mains: it’s something that the domains allow or not. The domains for the temperature of
two different mercury columns are in general not related: testing the value of one does not
tell us anything about the other. The topologies of the two domains, however, are going to
be the same because we’ll have the same possible values and the same way to experimentally
test them. Equivalence between experimental domains is a much stronger relationship than
equivalence of the natural topology. It carries enough of the semantic to be able to tell what
spaces are truly scientifically equivalent.

Let’s continue with our example. We can re-express a relationship between domains in
terms of causal relationship between the two domains. If x is the value of temperature of
the mercury column (i.e. a possibility for DX) and y is the height of the mercury column
(i.e. a possibility for DY ), then we can write y = f(x) since the height is determined by the
temperature.

Note that the direction of the causal relationship is the opposite of the inference. X causes
Y and from DY we can infer DX . Chains of events are in terms of possibilities and start with
the cause and end with the effect. Chains of inferences are in terms of verifiable statements
and start with the result and end with the origin.

The other directions do not work in general. Even if we know the final possibility, we may
not be able to reconstruct the initial possibility: if the water density is exactly 999.9 kg/m3,
the temperature could be either 0.52 or 7.6 Celsius because density peaks at 4 Celsius. For
the same reason, a measurement of the cause is not always equivalent to a measurement of
the effect: verifying that “the water temperature is between 0 and 0.52 Celsius” will mean
that “the water density is between 999.8 and 999.9 kg/m3” but not the other way around.
Because of the peak in density, the statement about the temperature tells us more (i.e. it is
narrower) than the statement about the density and therefore they are not equivalent. That
is: we can learn more about the temperature by measuring it directly than indirectly through
the density.

Another important consideration is that, in order to be consistent, the function y = f(x)
has to be continuous. The general idea is the following: if we say that we can only measure
both the temperature and height of a mercury column with finite precision, we have to make
sure that we can use the causal relationship for inference. Therefore a finite precision mea-
surement of height will correspond to a finite precision measurement of temperature. This
means a small change in height has to correspond to a small change in temperature: the
function is continuous.

More precisely, consider the verifiable statement sY =“the height of the mercury column is
between 24 and 25 millimeters”. The height of the mercury column y is within the verifiable
set U(sY ) = (24,25) millimeters. We can then infer that the temperature must be in the
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reverse image of the possible heights f−1(UY (sY )) = (24,25) Celsius. But this means that,
indirectly, we have experimentally verified that x is in f−1(UY (sY )). And if DX is really
the domain of the verifiable statements for the temperature, then it must contain one that
matches “the temperature of the mercury column is between 24 and 25 Celsius”. In other
words, f−1(UY (sY )) must be a set in the topology of X and the function is continuous.1

Definition 2.6. Let (X,TX) and (Y,TY ) be two topological spaces. A continuous func-
tion is a map f ∶ X → Y such that given any verifiable set UY ∈ TY its reverse image
f−1(UY ) ∈ TX is a verifiable set. A homeomorphism is a continuous bijective map such
that its inverse is also continuous.

Definition 2.7. A causal relationship between two experimental domains establishes
that determining which possibility is true in the first domain also determines which pos-
sibility is true in the second. Formally, a causal relationship between two experimental
domains DX and DY is a function f ∶ X → Y between the possibilities of the respective
domains such that x ≼ f(x) for all x ∈X.

Corollary 2.8. All causal relationships are continuous functions over the respective natural
topologies.

Proof. Let f ∶ X → Y be a causal relationship between DX and DY . Let y ∈ Y be
a possibility for DY . Consider f−1(y): this is the set of all possibilities in X that are
compatible with y which is, by definition, the theoretical set of y. Therefore we have
y ≡ ⋁

x∈f−1(y)
x. Now consider a verifiable statement sY ∈ DY and the associated verifiable

set UY (sY ) ⊆ Y . We have sY ≡ ⋁
y∈UY (sY )

y ≡ ⋁
y∈UY (sY )

⋁
x∈f−1({y})

x ≡ ⋁
x∈f−1(UY (sY ))

x. Given

that sY is verifiable, ⋁
x∈f−1(UY (sY ))

x is also verifiable because it is equivalent to a verifiable

statement. Since f−1(UY (sY )) is the set of possibilities compatible with that statement,
f−1(UY (sY )) must be a verifiable set and therefore f−1(UY (sY )) ∈ TX must be in the
natural topology of DX . Therefore f is a continuous function over the respective natural
topologies.

Corollary 2.9. A causal relationship between two domains is unique if it exists.

Proof. Suppose f1 ∶X → Y and f2 ∶X → Y are two causal relationships. Let x ∈X. We
have x ≼ f1(x) and x ≼ f2(x). This means f1(x) � f2(x). But these are two possibilities of
the same domain, so they are either incompatible or are the same possibilities. Therefore
f1(x) ≡ f2(x) for all x ∈X. The causal relationships are the same.

Theorem 2.10 (Experimental Relationship Theorem). Inference and causal relationships
are equivalent. More formally, let DX and DY be two experimental domains. An inference
relationship r ∶ DY → DX exists between them if and only if a causal relationship f ∶X → Y
also exists.

1In topology, continuity is defined in terms of the sets in the topology and not in terms of small changes
as in analysis. When using the standard topology on real numbers, the two coincide but not in general.



2.1. DEPENDENCE AND EQUIVALENCE BETWEEN DOMAINS 53

Proof. First we show that a causal relationship exists between the independent and the
dependent domain. Suppose DY depends on DX . Given that for each statement in DY
there exists an equivalent statement in DX , DY is effectively a subset of DX . Moreover,
since the theoretical domains for both experimental domains are generated by completing
under negation, the theoretical domain D̄Y will effectively be a subset of D̄X . This means
that a possibility x ∈ D̄X , if true, will determine all the truth values of all statements in
D̄Y , including its possibilities. Because one possibility of Y must be true and because all
possibilities are incompatible with each other, there must be one and only one possibility
y ∈ D̄Y compatible with x. Therefore we can define f ∶ X → Y the function that given a
possibility x ∈X returns the only possibility y = f(x) ≽ x that is compatible with it.

We still need to show that f is continuous. Consider a verifiable statement sY ∈ DY .
Let UY (sY ) ∈ TY be its verifiable set. Since DY depends on DX , we can find sX ∈ DX such
that sX ≡ sY . Let UX(sX) ∈ TX be its verifiable set. This is also the set of all possibilities
in X that are compatible with sY , which means UX(sX) contains all the possibilities that
are compatible with a possibility in UY (sY ). Since f returns the only possibility in Y
compatible with a possibility in X, f−1(UY (sY )) will return all the possibilities in X that
are compatible with a possibility in UY (sY ). That means f−1(UY (sY )) = UX(sX) and that
f−1 maps verifiable sets to verifiable sets. Therefore f is continuous.

Now we show that a causal relationship implies dependence between domains. Suppose
we have a causal relationship f ∶ X → Y between DX and DY . Let y ∈ Y be a possibility
for DY . Consider f−1({y}): this is the set of all possibilities in X that are compatible with
y which is, by definition, the theoretical set of y. Therefore we have y ≡ ⋁

x∈f−1({y})
x. Now

consider a verifiable statement sY ∈ DY . We have sY ≡ ⋁
y∈UY (sY )

y ≡ ⋁
y∈UY (sY )

⋁
x∈f−1({y})

x ≡

⋁
x∈f−1(UY (sY ))

x. Because f is continuous, the reverse image of a verifiable set is a verifiable

set. Therefore there is an sX ∈ DX such that UX(sX) = f−1(UY (sY )). The two verifiable
statements sX ≡ ⋁

x∈UX(sX)
x ≡ sY are equivalent. For each sY ∈ DY we can find an equivalent

sX ∈ DX so DY depends on DX .

Corollary 2.11. Two experimental domains DX and DY are equivalent if and only if there
exists a homeomorphism f ∶X → Y between the possibilities such that x ≡ f(x).

Proof. Let DX and DY be two equivalent experimental domains. Then we can find
the causal relationship f ∶ X → Y and g ∶ Y → X. We have x ≼ f(x) ≼ g(f(x)). Since
g(f(x)) ∈ X is a possibility, and since x is the only possibility compatible with itself, we
must have x ≡ g(f(x)). Therefore g is the inverse of f and it is continuous. Therefore f is
a homeomorphism. We also have x ≼ f(x) ≼ x, therefore f(x) ≡ x.

Now let f ∶X → Y be a homeomorphism between the possibilities of DX and DY such
that x ≡ f(x). Then f is a causal relationship and DY depends on DX . Let g be the inverse
of f , which is continuous since f is a homeomorphism. We have y ≡ f(g(y)) ≡ g(y). Then
g is also a causal relationship and DX depends on DY . Therefore DX ≡ DY .

Since for each inference relationship we have a causal relationship and vice-versa, we
will simply use the term experimental relationship to describe the link between the two
domains.
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We should stress that causal relationships and inference relationships are defined on spaces
that have, in a sense, a different status in a physical theory. Inference relationships are
defined on verifiable statements, on finite precision measurements, which are the objects
that are directly defined experimentally. In this sense, inferences have a higher status as
they are more directly related to experimental verification. However, the map r ∶ DY →
DX is over-complicated and redundant precisely because it maps all possible finite precision
measurements from one domain to the other. Conversely, the causal relationship f ∶X → Y is
only defined on the possibilities, on the points, therefore there is no redundancy. However, the
possibilities are not verifiable statements in general and are often the product of idealizations.
In this sense, causal relationships have a lower status as they are only indirectly defined by
experimental verification.

The perfect correspondence between causal and inference relationships is what rescues and
justifies the predominant focus on causal relationships to describe experimental relationships:
since studying one is mathematically the same as studying the other, why should we use
the more complicated object? Therefore, while the inference relationship is more directly
physically meaningful, the causal relationship is a much more convenient object to study and
characterize. That is why, in the end, all relationships will be predominantly defined by a
function over the possibilities.

We now turn our attention back to domain equivalence. We have seen that two experi-
mental domains DX and DY are equivalent if they consist of equivalent statements: if they
allow a one to one correspondence that preserves the equivalence of their statements. This
implies, for example, that the possibilities are also equivalent but there is more to it.

Suppose we define some type of operation on one domain. For example, on the experimen-
tal domain for the temperature of a mercury column we define an increase by one Celsius; or
on the experimental domain for the amount of gasoline in a tank we define the sum of two pos-
sible amounts. These will correspond either to operations on the domain (e.g. f ∶ DX → DX)
or on its possibilities (e.g. + ∶ X ×X → X). But by doing so we are also defining them on all
equivalent domains as well: in the end, they are made of equivalent statements. Therefore we
are also defining an increase of the height of the mercury column and the sum of the monetary
value of the gasoline.

This means that if we capture some physical feature using some mathematical structure
on one domain, then all equivalent domains will inherit the same structure. Moreover, the
causal relationship is a function that preserves that structure. If the possibilities of one
domain form a vector space, then the possibilities of an equivalent domain form a vector
space and the causal relationship is an invertible linear transformation. If the possibilities of
one domain form a group, then the possibilities of an equivalent domain form a group and
the causal relationship is an isomorphism.2 As we’ll see much later, this is fundamental since
deterministic and reversible evolution means equivalence of the domains describing the past,
present and future states. Therefore deterministic and reversible motion is not “just” a one
to one map.

Theorem 2.12 (Domain Equivalence is Isomorphism). Let DY ≡ DX be two equivalent

2Domain equivalence is an isomorphism in whatever category (e.g. topological space, group, vector space,
...) used to model the experimental domain.
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experimental domains. Suppose DX is endowed with some mathematical structure. Then
DY is also endowed with an equivalent structure and the experimental relationship preserves
said structure.

Proof. Since an experimental domain is really defined not on the statements themselves
but on their equivalence classes, the mathematical structure will also be defined on the
equivalence classes. But this means that a structure defined on DX is also defined on DY
since they contain the same equivalence classes. Therefore DY is also endowed with an
equivalent structure.

The experimental relationship can either expressed as a map between possibilities f ∶
X → Y or as a map between verifiable statements r ∶ DX → DY . This means that the
mathematical structure defined on DY can be transported to DX using the experimental
relationship. But since the mathematical structure defined on DX already contains the
mathematical structure defined on DY , the transported mathematical structure has to be
the same. That is, the experimental relationship must preserve the mathematical structure
defined on DX .

Note that the converse is not true: two domains that are endowed with the same math-
ematical structure are not necessarily equivalent. Consider two similarly constructed ther-
mometers: their respective experimental domains are not equivalent since knowing something
about one tells us nothing about the other. Yet, their natural topologies are equivalent be-
cause the way we can measure temperature for both is the same. One way to look at it is that
the mathematical structures “forget” the full equivalence between statements and only look
at a particular aspect. Topological spaces capture how the possibilities are distinguished in
terms of verifiable statements. Therefore, while the domains for temperature of two different
thermometers are not equivalent, their natural topologies are equivalent because the way we
characterize all possible measurements is the same (i.e. the value is within a finite precision
interval). Similarly, the σ-algebra only cares about what statements lead to valid predictions.
We’ll see that, in some cases, Abelian groups will capture how distributions can be composed
into other distributions, that non-Abelian groups will capture how transformations can be
composed into other transformations, and so on.

2.2 Combining domains

In this section we want to understand what happens when we combine statements from
different domains. For example, suppose we have the experimental domain for the pressure
of an ideal gas and the experimental domain for its temperature. We can mix and match
verifiable statements with conjunction and disjunction as in “the pressure is between 1 and
1.1 KPa”∧“the temperature is between 20 and 21 C” creating a new domain. How can we
characterize this combined experimental domain?

The main result of this section is that the possibilities of the combined domain depend on
how compatible the verifiable statements of the domains are. In particular, if the verifiable
statements are independent across domains (e.g. the horizontal and vertical position of an
object), then the possibilities of the combined domain will be the scalar product of those
for the individual domains. On the other hand, if the verifiable statements are incompatible
across domains (e.g. plant identification and animal identification), then the possibilities for
the combined domain will be the disjoint union of the possibilities of the individual domains.
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Suppose DX is the experimental domain generated by the two verifiable statements “the
patient is dead” and “the patient is alive” and a second one DY generated by the two verifiable
statements “the patient is not in a coma” and “the patient is in a coma”. The given verifiable
statements also correspond to the possibilities for the respective domains.

We can construct the combined domain DX × DY by taking all possible disjunctions and
conjunctions. What are the possibilities for the new domain? Since by 1.48 the possibilities
are minterms, we have the following cases to consider:

� “the patient is alive” ∧ “the patient is in a coma”
� “the patient is alive” ∧ “the patient is not in a coma”
� “the patient is dead” ∧ “the patient is in a coma”
� “the patient is dead” ∧ “the patient is not in a coma”

The third one is impossible: the patient cannot be dead and in a coma. Therefore the
combined domain has only three possibilities. The possibilities of the combined domain are,
in general, the subset of all possible combinations (i.e. the scalar product) of the possibilities
of the domains we are combining, those that are not impossible.

Definition 2.13. Let {DXi}∞i=1 be a countable set of experimental domains. The com-

bined experimental domain DX =
∞

⨉
i=1
DXi is the experimental domain generated from

all statements in {DXi}∞i=1 by finite conjunction and countable disjunction.
Proof. We need to show that the combined experimental domain is indeed an experi-

mental domain. It will contain the certainty and the impossibility since any of the original
experimental domains contains them. It is closed under finite conjunction and countable
disjunction by construction. To show that it has a countable basis, for each i = 1..∞ let

Bi ∈ DXi be a countable basis for the respective domain. Consider B =
∞

⋃
i=1
Bi. From this set

we can generate any DXi and therefore we can also generate all of DX . B is a basis and it
is countable since it is the union of a countable set of countable elements. Note that it is
precisely because the basis needs to remain countable that we cannot extend the operation
to an uncountable set of domains.

Proposition 2.14. The possibilities for a combined domain are a subset of the scalar
product of the possibilities for the individual domains. Formally, let {DXi}∞i=1 be a countable
set of experimental domains and {Xi}∞i=1 their respective possibilities. Let X be the set

of possibilities for the combined domain DX =
∞

⨉
i=1
DXi. Then X = {x =

∞

⋀
i=1
xi ∣ {xi}∞i=1 ∈

∞

⨉
i=1
Xi, x ≢ �}.

Proof. A possibility x of the combined domain is a minterm of a basis B ⊆ DX . Since

we can choose B =
∞

⋃
i=1
Bi where Bi ⊆ DXi is a countable basis for each domain, x is the

conjunction x ≡
∞

⋀
i=1
xi of minterms xi of Bi. Since x is a possibility, it is not impossible and

therefore none of the xi can be impossible. Since each xi is a minterm of the respective
basis Bi that is not impossible, it is a possibility by 1.48. Therefore a possibility x of the
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combined domain is the conjunction of the possibilities xi of the original domains that is
not impossible.

Proposition 2.15. Let {DXi}∞i=1 be a countable set of incomplete experimental domains
and DX their combined experimental domain. Let {x̊i}∞i=1 be the residual possibility of each

respective domain. Let x̊ =
∞

⋀
i=1
x̊i. The combined domain DX is incomplete if and only if

x̊ ≢ � in which case x̊ is the residual possibility.

Proof. For each domain, the residual possibility is the conjunction of the negation of

its basis. Therefore we have x̊ ≡ ⋀
e∈B

¬e ≡
∞

⋀
i=1

⋀
e∈Bi

¬e ≡
∞

⋀
i=1
x̊i. If x̊ ≢ � then it is the residual

possibility.

Corollary 2.16. The residual possibility of the combined domain is narrower than the
ones of the original domains. If one of the domains is complete then the combined domain
is also complete.

Proof. Let x̊ be the residual possibility for the combined domain and x̊j the one for one

of the original domains. We have x̊j ∧ x̊ ≡ x̊j ∧
∞

⋀
i=1
x̊i ≡

∞

⋀
i=1
x̊i ≡ x̊. Therefore, by 1.22 x̊ ≼ x̊j .

Suppose that one of the original domains DXj is complete. Then the conjunction of
the negation of its basis x̊j is an impossibility. This means the conjunction of the negation
of the basis of the combined domain x̊ is also an impossibility and the combined domain
is complete.

Independent domains

A special case is when combining two independent domains. For example, the domain for the
pressure and the domain for the volume of an ideal gas are independent because a measurement
on one tells us nothing about the other. Similarly, the domain for the shape and the domain
for the color of an object are independent. In these cases, we can have any combination of
possibilities: any pressure with any volume or any color with any shape.

In terms of topology, the possibilities of the combined domain are the Cartesian product of
the possibilities of the original domains and their natural topology is the product topology.3

Definition 2.17. The experimental domains of a countable set {DXi}∞i=1 are independent
if taking one verifiable statement si ∈ DXi from each domain always gives an independent
set of statements.

Proposition 2.18. Let {DXi}∞i=1 be a countable set of independent experimental domains
and Xi their respective possibilities. The set of possibilities X of the combined experimental

domain
∞

⨉
i=1
DXi consists of all the possible conjunctions of the possibilities of each domain.

3Note that the topology is quite naturally the product topology and not the box topology. The box topology
would require countable conjunction and is therefore discarded. The fact that the correct topology is the one
most natural to define confirms again the appropriateness of our framework.
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That is: X = {
∞

⋀
i=1
xi ∣xi ∈Xi}. Notationally, we write DX = D∞

⨉
i=1

Xi

.

Proof. A possibility x ≡
∞

⋀
i=1
xi for the combined domain is the conjunction of possibilities

of each individual domain by 2.14. Since the domains are independent and since possibilities
are neither certainties nor impossibilities, by 1.21 there exists an assignment a ∈ AS such
that a(xi) = true for all i = 1..∞ and therefore a(x) = true. That is, each conjunction

x =
∞

⋀
i=1
xi is not impossible and therefore is a possibility.

Definition 2.19. Let {(Xi,Ti)}∞i=1 be a countable set of topological spaces. Let X =
∞

⨉
i=1
Xi

be the Cartesian product of the points. Let B be the collection of sets of the form
∞

⨉
i=1
Ui,

with Ui ∈ Ti and Ui ≠ Xi only finitely many times. The topology generated by B is called
the product topology.

Proposition 2.20. Let {DXi}∞i=1 be a countable set of independent experimental domains.
The natural topology for the possibilities of the combined experimental domain D∞

⨉
i=1

Xi

is

the product topology of the natural topology for the possibilities of each domain.

Proof. Let Ui ∶ DXi → TXi be the map from a verifiable statement of a domain to
its verifiable set in the respective topology. Let U ∶ DX → TX be the same map for the
combined domain. Let si ∈ DXi be a verifiable statement from a particular domain and
Ui(si) its verifiable set in that domain. Since we also have si ∈ DX , the statement is also
associated with the verifiable set U(si) in the combined domain. Because the domains are
independent, every possibility in Ui(si) is compatible with any possibility xj ∈ Xj for all
j ≠ i. This means that U(si) = X1 × ... ×Xi−1 × Ui(si) ×Xi+1 × ... . Given that a verifiable
statement in the combined domain can be generated using finite conjunction and countable
disjunction from the verifiable statements of the independent domains, the topology of the

combined space can be generated by all sets of the form
∞

⨉
i=1
Ui, with Ui ∈ Ti and Ui ≠Xi only

once. Using finite conjunction, this includes those sets where Ui ≠ Xi finitely many times.
The natural topology of the combined domain is the product topology by definition.

Dependent domains

Another special case is combining a domain DX with another DY ⊆ DX that is dependent
on it. For example, combining the domain for the temperature of a mercury column with
the domain for its height. Since the height can be determined by the temperature, no new
possibilities are added. The combined domain is equivalent to the independent domain DX
since all the verifiable statements in DY have equivalents in it.

Proposition 2.21. Let DX and DY be two experimental domains such that DY ⊆ DX
depends on the first. Then DX ×DY ≡ DX .
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Proof. Since DY is dependent on DX , any statement in DY is equivalent to one in DX .
Therefore no statement can be generated from them that is not equivalent to one already
contained in DX . Therefore DX ×DY is equivalent to DX .

Corollary 2.22. Let DX and DY be two experimental domains such that DY ⊆ DX depends
on the first. The possibilities of DX ×DY are the possibilities of DX .

Proof. The possibilities of DX ×DY are the possibilities of DX since they are equivalent
domains. To be consistent with 2.14, we additionally show that they are also the subset
of the scalar product. Let f ∶ X → Y be the causal relationship between the domains, let
x and y be two possibilities of the respective domains. We have x ∧ y ≢ � if and only if
y = f(x), so the possibilities of DX×DY are x∧f(x) for all x ∈X. We also have x∧f(x) ≡ x
since x ≼ f(x).

Incompatible domains

The last special case we consider is when the domains are incompatible, that is all verifiable
statements of one are incompatible with the verifiable statements of the others. This is one
case where the residual possibility behaves differently from all the others.4 Suppose DX is
the domain to classify a particular specimen as an animal and DY is the domain to classify it
as a plant. If we take a verifiable statement from the first, such as “that specimen has fur”,
then it will be incompatible with a verifiable statement from the other, such as “that specimen
has lobed leaves”. The only way we can combine the possibilities is to take an established
possibility of one (e.g. “this specimen is a cat”) and combine it with the residual possibility
of the other (e.g. “this specimen is not a plant”). In other words, the combined possibilities
are the union of the possibilities of the two domains (e.g. all possible plants and all possible
animals).

In terms of the topology, the established possibilities of the combined domain are the
disjoint union of the established possibilities of the original domains and their natural topology
is the disjoint union topology (or co-product topology).

Definition 2.23. Two experimental domains DX and DY are incompatible if all verifi-
able statements in one are incompatible with all verifiable statements of the other. Formally,
sX � sY for each pair of verifiable statements sX ∈ DX and sY ∈ DY .

Corollary 2.24. Let DX and DY be two incompatible experimental domains. Then they
must be incomplete and admit a residual possibility.

Proof. Let BX and BY be a countable basis for the respective domain. Since we have
eX � eY for all choices of eX ∈ BX and eY ∈ BY , we also must have ⋁

eX∈BX

eX � ⋁
eY ∈BY

eY .

Therefore ⋁
eX∈BX

eX ≢ ⊺. Which means the residual possibility x̊ = ⋀
eX∈BX

¬eX = ¬ ⋁
eX∈BX

eX ≢
�. Therefore DX is not complete and, by symmetry, neither is DY .

Proposition 2.25. Let {DXi}∞i=1 be a countable set of experimental domains pair-wise
incompatible and Ẋi their respective established possibilities. The set of established possi-

4In fact, this is what prompted us to introduce the residual possibility.
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bilities Ẋ of the combined experimental domain
∞

⨉
i=1
DXi consists of the disjoint union of the

possibilities of each domain. That is: Ẋ =
∞

∐
i=1
Ẋi =

∞

⋃
i=1
Ẋi as Ẋi ∩ Ẋj = ∅ for all i, j ≥ 1 and

i ≠ j. Notationally, we write DX = D∞
∐
i=1

Xi

.

Proof. Consider two incompatible domains DX and DY . Let ẋ ∈ X and ẏ ∈ Y be
two established possibilities. Then they both correspond to a minterm of the respective
basis where at least one element is taken without negation. This also means that their
conjunction will include the conjunction of one element of each of the basis. Since the
elements of one basis are incompatible with the elements of the other, we have ẋ � ẏ.

Now let ẋ ∈ X be an established possibility, ẙ ∈ Y the residual and Ẏ = Y ∖ {ẙ} the
established possibilities. We have ẋ ≡ ẋ∧⊺ ≡ ẋ∧ ⋁

y∈Y
y ≡ ẋ∧( ⋁

ẏ∈Ẏ

ẏ∨ ẙ) ≡ ⋁
ẏ∈Ẏ

(ẋ∧ ẏ)∨(ẋ∧ ẙ) ≡

� ∨ (ẋ ∧ ẙ) ≡ ẋ ∧ ẙ. By symmetry, ẏ ≡ x̊ ∧ ẏ.
To conclude, let x̊ ∈ X and ẙ ∈ Y be the two residual possibilities. The conjunction

x̊ ∧ ẙ corresponds to a minterm where all the elements of the basis are negated. Therefore
x̊ ∧ ẙ is the residual possibility of the combined domain, if it is not impossible.

Generalizing to a countable set of incompatible domains, the conjunction of all the
residual possibilities x̊ = ⋀∞i=1 x̊i is the residual possibility of the combined domain, if it is
not impossible. The only other conjunctions of the form x = ⋀∞i=1 xi with xi ∈ Xi for all
i ≥ 1 that are not impossible are those where only one element is not a residual possibility.
Those correspond to the established possibilities. But each of those conjunctions will be
equivalent to the only element that is not a residual possibility. Therefore each established
possibility of the combined domain is equivalent to an established possibility of one of the

original domains: Ẋ =
∞

⋃
i=1
Ẋi. Given that the established possibilities of two incompatible

domains are incompatible and therefore different, we have Ẋi ∩ Ẋj = ∅ for all i, j ≥ 1 and
i ≠ j. The established possibilities of the combined domains are the disjoint union of the
established possibilities of the individual domains.

Definition 2.26. Let {(Xi,Ti)}∞i=1 be a countable set of topological spaces. Let X =
∞

∐
i=1
Xi

be the disjoint union of the points. The disjoint union topology T is the topology for
which U ∈ T if and only if U ∩Xi ∈ Ti for all i ≥ 1.

Proposition 2.27. The disjoint union topology is generated by closing the topologies of
the initial spaces under disjoint union.

Proof. First we show that all disjoint unions of verifiable sets are part of the disjoint
union topology. Let {(Xi,Ti)}∞i=1 be a countable set of topological spaces and (X,T) their
disjoint union with the disjoint union topology. Any disjoint union of verifiable sets can

be put in the form U =
∞

∐
i=1
Ui with Ui ∈ Ti for all i ≥ 1. We have U ∩Xi =

∞

∐
i=j
Uj ∩Xi = Ui

for all i ≥ 1. Therefore U ∈ T by definition.
Now we show that any set in the disjoint union topology is the disjoint union of verifiable

sets of the individual topologies. Let U ∈ T. Since U ⊆ X and X is the disjoint union for
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all Xi, we can write U =
∞

∐
i=1
Ui. As before U ∩Xi = Ui for all i ≥ 1 and, since U ∩Xi ∈ Ti

for all i ≥ 1 by definition of the disjoint union topology, Ui ∈ Ti for all i ≥ 1. Therefore any
U ∈ T is the disjoint union of verifiable sets.

This also shows that the disjoint union topology is a topology since it is closed under
arbitrary union by definition, it is closed under finite intersection within each topology and
it is closed under finite intersection across topologies since their intersection is always the
empty set.

Proposition 2.28. Let {DXi}∞i=1 be a countable set of pair-wise incompatible domains.
The natural topology for the established possibilities of the combined experimental domain
D∞
∐
i=1

Xi

is the disjoint union topology of the natural topology for the established possibilities

of each domain.

Proof. Given that the domains are incompatible, they are also incomplete. The only
statement in each domain DXi compatible with the respective residual possibility x̊i will
be the certainty ⊺. This means the natural topology restricted to the established possi-
bilities contains all the verifiable sets associated to the impossibilities and to all verifiable
statements. This will also be true for the combined domain D∞

∐
i=1

Xi

, if it is incomplete. If

it is complete, then the established possibilities are the full possibilities and their natural
topology coincides. Note that all verifiable statements in the combined domain can be
generated from the verifiable statements of the individual domains. Also note that the
conjunction between the different domains is an impossibility and therefore does not yield
a new statement. Therefore all the statements whose verifiable sets form the topology on
the established possibilities on the combined domain can be generated by the disjunction
of all the statements whose verifiable sets form the topology on the established possibilities
on the individual domains. Therefore the topology of the combined space is simply closing
the individual topologies under the disjoint union. The topology of the combined space is
therefore the disjoint union topology by 2.27

For topologies, as well as for other mathematical structures, we can choose between two
types of products. If we have two one dimensional euclidean spaces we can decide whether to
take their product (i.e. the plane) or their co-product (i.e. the disjoint union of the two lines).
For experimental domains we do not choose: it is what it is. There is no way to combine the
two experimental domains for temperature and height of the same mercury column and get the
Cartesian product of their possibilities. Though combining two independent domains mimics
the categorical product and combining two incompatible domains mimics the categorical co-
product, it is the semantic (and ultimately physical) relationship between them that decides
which product we have. This is another case where the mathematical structures “forget” the
full equivalence. The topology only captures how the temperature and height can be measured,
and not whether they are independent, dependent or incompatible. That information lies
outside of the topology and therefore needs to be added by choosing the correct combination.



62 CHAPTER 2. DOMAIN COMBINATION AND RELATIONSHIPS

2.3 Experimental domain for experimental relationships

Now that we have seen how to describe relationships between domains, we should ask: are
experimental relationships themselves something we can experimentally verify? We may know
that there is a relationship between the temperature of a mercury column and its height, but
how can we confirm experimentally which one it is?

The main result of this section is to show that, given two related experimental domains, we
can always mathematically construct from them another experimental domain for which the
possibilities are continuous functions between the possibilities of the original domains. This
means that, since we can recursively create relationship domains about relationship domains,
the universe of discourse of our mathematical framework is closed. Yet, the availability of the
experimental tests (i.e. whether the statements we construct are actually verifiable) is not
guaranteed.

First of all we have to clarify within our framework what it means to experimentally
verify a relationship. Suppose DX is the domain for the state of a light switch, up or down
being the two possibilities, and DY is the domain for the state of the light, which can be
on or off. Suppose we could have three cases: the one where the switch is wired correctly,
up corresponding to on, the one where the switch is wired incorrectly, up corresponding to
off, and the one where the switch is not actually wired to the light, the two domains are
independent. Each of these cases is represented by a different set of logical relationships, a
different set of possible assignments.

X Y
up down on off

T F T F
F T F T

Table 2.1: Case 1: switch wired correctly to the light

X Y
up down on off

T F F T
F T T F

Table 2.2: Case 2: switch wired incorrectly to the light

X Y
up down on off

T F T F
T F F T
F T T F
F T F T

Table 2.3: Case 3: switch not wired to the light
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Each case, then, is a different model: a different logical context. To experimentally verify
which model is the right one means verifying statements of the type “it is possible for the
switch to be up while the light is on”. This does not correspond to “the switch is up” ∧ “the
light is on” but to “the switch is up” � “the light is on”. These are statements about the table
and they cannot be columns of the table itself. What we need to create is a metacontext, in
which each line corresponds to one choice of model, to one context.

up � on down � on up � off down � off

Case 1 T F F T
Case 2 F T T F
Case 3 T T T T

Table 2.4: Possible assignments for the metacontext

Each line will tell us what statements are compatible and given the truth values of the
line we can reconstruct the model. The verifiable statements that distinguish between differ-
ent models, therefore, live in this metacontext and so will the experimental domain for the
relationships.

Definition 2.29. Let S1 and S2 be two logical contexts. Let S1 ⊆ S1 and S2 ⊆ S2 be sets
of statements. We say f ∶ S1 → S2 is a logic homomorphism if it preserves the logical
structure. That is:

� possible assignments on S2 correspond to possible assignments on S1: if a2 ∈ AS2

then there exists a1 ∈ AS1 such that a1(s) = a2(f(s)) for all s ∈ S1

� a verifiable statement of S1 is mapped to a verifiable statement in S2

Additionally, if there exists a logic homomorphism g ∶ S2 → S1 such that f ○ g = IdS1

and g ○ f = IdS2 then f is a logic isomorphism and g is the inverse of f . Two logic
isomorphisms f ∶ S1 → S2 and g ∶ S1 → S2 are equivalent if f(s) ≡ g(s) for all s ∈ S1.

Corollary 2.30. Let h ∶ S1 → S2 be a logic homomorphism, then for every ŝ ∈ S1, Ŝ ⊆
S1 and fB ∶ BŜ → B such that a1(ŝ) = fB({a1(s)}s∈Ŝ) for all a1 ∈ AS1, then a2(h(ŝ)) =
fB({a2(h(s))}s∈Ŝ) for all a2 ∈ AS2. In particular:

� h(¬s) ≡ ¬h(s) for all s ∈ S1

� h(⋀s∈S s) ≡ ⋀s∈S h(s) for all S ⊆ S1

� h(⋁s∈S s) ≡ ⋁s∈S h(s) for all S ⊆ S1

Proof. If a1(ŝ) = fB({a1(s)}s∈Ŝ) for all a1 ∈ AS1 then, by the first property of logic
homomorphisms, there is no a2 ∈ AS2 such that a2(h(ŝ)) ≠ fB({a2(h(s))}s∈Ŝ). Therefore
a2(h(ŝ)) = fB({a2(h(s))}s∈Ŝ) for all a2 ∈ AS2 .

In particular, since the relationship holds for any arbitrary fB, it will hold for negation,
arbitrary conjunction and arbitrary disjunction.

Proposition 2.31. Let S1 and S2 be two logical contexts. Let S1 ⊆ S1 and S2 ⊆ S2 be
sets of statements and f ∶ S1 → S2 a logic homomorphism. Let S̄1 ⊆ S1 and S̄2 ⊆ S2 be
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the closure of S1 and S2 respectively under arbitrary conjunction, arbitrary disjunction and
negation. Then if there exists a logic homomorphism f̄ ∶ S̄1 → S̄2 such that f̄(s1) ≡ f(s1)
for all s1 ∈ S1 it is unique.

Proof. Let s̄1 ∈ S̄1 but s̄1 ∉ S1. Then s̄1 depends on S1 through some gB ∶ BS1 → B. Let
f̄1 ∶ S̄1 → S̄2 and f̄2 ∶ S̄1 → S̄2 be two logic homomorphisms such that f̄1(s1) ≡ f̄2(s1) ≡ f(s1)
for all s1 ∈ S1. Then by 2.30 both f̄1(s̄1) and f̄2(s̄1) depend on S2 through gB. This means
that in every possible assignment a ∈ AS̄2

we have a(f̄1(s̄1)) = a(f̄2(s̄1)) and therefore
f̄1(s̄1) ≡ f̄2(s̄1). Then f̄1 and f̄2 are equivalent.

Definition 2.32. Let DX ,DY ⊆ S be two experimental domains. The relationship meta-
context SC(X,Y ) between DX and DY over {Si}i∈I is defined by following construction.
Let I be an index set. Let {Si}i∈I be an indexed set of logical contexts, let {DXi}i∈I and
{DYi}i∈I be two indexed sets of experimental domains such that DXi ,DYi ⊆ Si for all i ∈ I.
Let {fi}i∈I be a set of logic isomorphisms such that fi ∶ DX → DXi. Let {gi}i∈I be a set of
logic isomorphisms such that gi ∶ DY → DYi.

Let S be the set of ordered pairs of DX and DY and “sx � sy” be the notation of an
element of S for some sx ∈ DX and sy ∈ DY . For each i ∈ I, let ai ∈ BS be such that
ai(“sx � sy”) = true if and only if fi(sx) � gi(sy). Define AS = {ai ∣ ∀i ∈ I}. Assume
ai ≠ aj if i ≠ j; if not, given a subset of I that leads to the same possible assignment,
remove all elements but one. Pick t ∈ I and define truth = at.

Given an arbitrary function fB ∶ BS → B, we can extend the set S with a new element for
which the possible assignments are calculated according to the function. The relationship
context SC(X,Y ) is the closure of S under all possible functions fB ∈ BS.

Let Sv ⊆ S be set of statements “sx ≼ sy”=“sx � ¬sy”=¬“sx � ¬sy” such that sx ∈ DX and
sy ∈ DY are verifiable. The set of verifiable statements Sv ⊆ S for the relationship context is
the set of statements generated by Sv using finite conjunction and countable disjunctions.

Justification. By constructions, the relationship context satisfies the axioms for a logical
context. We have a set of elements and a set of possible assignments of which one is the
truth, this satisfies axioms 1.2 and 1.4. Some of the statements are verifiable and satisfy
1.27. Closure for axioms 1.9, 1.31 and 1.32 are satisfied by constructions. We need to
clarify why and what cases this construct makes physical sense.

The set {Si}i∈I consists of different contexts, each containing a copy of the domains
DX and DY with a different relationship between them. For example, if DX is the domain
for a light switch, up or down being the possibilities, and DY is the domain for the light,
being on or off, in one context the two domain may have a causal relationship (i.e. the
switch is wired to the light), in another they may have a different causal relationship (i.e.
the switch is wired in the wrong way), and in yet another they may be independent (i.e.
switch is not wired with the light). The logic isomorphisms {fi}i∈I and {gi}i∈I allow us
relate the statements that represent the same assertion in the different contexts.

Note that while mathematically we can always construct the relationship metacontext,
it may not exist in reality. Specifically, there is nothing that guarantees that statements
of the form “sx ≼ sy” are actually verifiable.

Now that we have the right context, we have to understand what is the right basis to
generate the experimental domain. Suppose we have a way to verify experimentally statements
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of the type “the temperature of the mercury column is between 24 and 25 Celsius”≼“the height
of the mercury column is between 24 and 25 millimeters”. That is, we can verify that whenever
sX =“the temperature of the mercury column is between 24 and 25 Celsius” is verified, then
sY =“the height of the mercury column is between 24 and 25 millimeters” is verified. In
that case, we can explore the connection between the two domains within different ranges
at ever increasing precision. This means we can narrow the range of possible functions in
the same way that we can narrow the range of possible values for a quantity. These types
of statements, then, form an experimental domain where each possibility corresponds to a
possible continuous function between the two initial experimental domains.

Definition 2.33. Let SC(X,Y ) be the relationship metacontext between DX and DY over
{Si}i∈I . Let DYi ⊆ DXi for all i ∈ I. Let BX ⊆ DX , BY ⊆ DY be the two countable basis of
the respective domains and let B = {“ex ≼ ey” ∣ ex ∈ BX , ey ∈ BY }. Then the relationship
domain DC(X,Y ) is the experimental domain generated by B.

Proof. The only thing that needs to be checked is that the basis that generates DC(X,Y )
is countable. Since BX and BY are countable, the set of statements of the form ≼(ex, ey)
with ex ∈ BX and ey ∈ BY is also countable.

Proposition 2.34. The possibilities for a relationship domain DC(X,Y ) coincide with the
possible experimental relationships between X and Y . That is, for each possibility z of
DC(X,Y ) there exists a continuous function fz ∶ X → Y such that z ≡ ⋀

x∈X
“x ≼ fz(x)” and

an i ∈ I such that ḡi(fz(f̄−1
i (xi))) ≡ fc(xi) for all xi ∈Xi where fc is the causal relationship

between DXi and DYi.

Proof. First we show that for each possibility z of the relationship domain there exists
a set Pz ⊆ X × Y such that z ≡ ⋀

(x,y)∈Pz

“x � y” ∧ ⋀
(x,y)∉Pz

“x � y”. Let z be a possibility

of a relationship domain. This will be a minterm of the basis therefore z ≡ minterm(B).
Let x ∈ X and y ∈ Y be two possibilities and consider the statement “x � y”. If z is true
in a possible assignment, then the truth value for all statements of the form “ex ≼ ey”
where (ex, ey) ∈ BX × BY will be set. But x � y if and only if there exists at least one pair
(ex, ey) ∈ BX ×BY such that x ≼ ex ≼ ey and y � ey. Therefore if z is true in an assignment
it will tell us whether x � y is true or not, so we either have z ≼ “x � y” or z ≼ ¬“x � y”.
Let Pz = {(x, y) ∈X ×Y ∣ z ≼ “x � y”} and ẑ = ⋀

(x,y)∈Pz

“x � y”∧ ⋀
(x,y)∉Pz

¬“x � y”. Then z ≼ ẑ.

Conversely, if we suppose ẑ to be true in an assignment, then we will know the truth
assignment for all statements of the form “x � y” where (x, y) ∈X×Y . Let (ex, ey) ∈ BX×BY
and consider the statement “ex ≼ ey”. We have ex ≼ ey if and only if there is no pair (x, y)
such that x ≼ ex, y � ey and x � y. Therefore if ẑ is true in an assignment it will tell us
whether ex ≼ ey is true or not, so we either have ẑ ≼ “ex ≼ ey” or ẑ ≼ ¬“ex ≼ ey”. As z is a
minterm of statements of the form “ex ≼ ey”, we’ll either have ẑ ≼ z or ẑ � z. Since z ≼ ẑ,
ẑ � z and therefore ẑ ≼ z. Since we also have z ≼ ẑ, then we have z ≡ ẑ.

Now we want to show that for each possibility z there is a function fz ∶ X → Y such
that z ≡ ⋀

x∈X
“x ≼ fz(x)”. We note that statements of the form “sx � sy are precisely the

statements used to generate the relationship metacontext. Statements of the form “x � y”,
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where x ∈ X and y ∈ Y , are enough to determine the truth value of statements of the
form “sx � sy. Therefore for each possibility z there is be one and only one possible truth
assignment in which z is true. That is, each x correspond to particular logical context
Si. Since in that context DYi ⊆ DXi there will be a causal relationship fi ∶ Xi → Yi such
that xi ≼ fi(xi) which means xi � yi if and only if yi = fi(xi). Since causal relationships
are unique and the possible assignments are distinct, to each z will correspond a unique
fz ∶ X → Y such that ḡi ○ fz ○ f̄−1

i = fi and z ≡ ⋀
x∈X

“x ≼ fz(x)”. Moreover fz is continuous

since f̄i and ḡi are logical isomorphisms.

Note that the definition for the metacontext simply declares some statements to be veri-
fiable: it does not guarantee that this is actually possible. So when can we do it? Or better,
what do we need in practice to be able to build the necessary confidence? Let’s think how we
would test the relationship between temperature and height of a mercury column. We would
prepare different mercury samples with different values of temperatures in many different
conditions, measure height and temperature with different devices, repeat many times, ask
someone else to do it independently, compare results, and so on. At some point we will have
explored enough of the possible cases, checked and tried anything that could invalidate the
result and we will have the confidence to say that “if the temperature of the mercury column is
between 24 and 25 Celsius then its height is between 24 and 25 millimeters”. We should stress
that the procedure is not at all to observe a few values and then generalize. It is not mere
induction. It is the ability to prepare and control the system in many different conditions
and our inability to violate the relationship that gives us the confidence needed to reach the
conclusion.

Suppose, in fact, that we want to experimentally verify the link between inflation and
money supply. As long as we cannot create new countries in different economic conditions,
the only thing we can do is gather data for as many nations as we can throughout history.5

Since we cannot purposely explore different conditions and we can’t even replicate older ones,
the best we can do is show that there was a correlation between those specific values. It is the
inability to freely and fully explore the problem space that may not enable us to experimentally
verify the causal relationship.6

The point is that we cannot give a general purpose algorithm for how to construct ex-
perimental tests for the relationships starting from the experimental tests of the individual
domains. We cannot formalize in general what it means that we have explored the space
“enough” to consider the relationship verified, no more than we can formalize when the
data collected is “enough” to consider a statement verified or when a statement is specific
“enough” to consider the semantics well defined. This is where the practice of experimental
science comes in.

But, while we may not know in general whether we can experimentally verify a relation-
ship between two specific domains, we do know that the relationship domain can always be
constructed in principle and therefore our mathematical framework is complete. That is:
we can take two experimental domains (e.g. Dt for time and Dx for position), construct a
relationship domain between them (e.g. Dx(t) for trajectories in space), then take another

5Computer simulations can sometimes alleviate this problem, though they are only as good as the model
one uses.

6In this sense, experimental sciences allow for more rigorous results than observational sciences precisely
because it is more feasible to experimentally test relationships between domains.
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experimental domain (e.g. D(q,p) for the states) and construct another relationship domain
between the two (e.g. D(q,p)→x(t) for the relationship between states and trajectories). Our
general mathematical theory of experimental science is therefore closed, since we can recur-
sively create relationship domains about relationship domains indefinitely while remaining
within its bounds. In other words, experimentally distinguishable objects and their relation-
ships will never lie outside of the theory.

2.4 Summary

In this chapter we have seen the first important set of consequences of our general mathemat-
ical theory of experimental science. We have seen that experimental relationships between
domains can be defined in terms of inference between verifiable statements or equivalently in
terms of causal relationship between possibilities. The causal relationship always corresponds
to a continuous function in the natural topology. Moreover, it will need to preserve any
additional mathematical structure that formalizes a physical characteristic of the domain.

We have also seen how to combine a set of countably many experimental domains and
how the combined possibilities depend on the logical and semantic relationships that exist
across domains. Depending on the case, we can have the scalar product of the possibilities
(with the product topology) all the way to the disjoint union of the established possibilities
(with the disjoint union topology).

We have shown that it is possible to construct experimental domains for the relationships
themselves. This means that within our theory we can describe relationships of arbitrarily
higher order (i.e. relationships about relationships) and therefore we never go outside of our
framework.

As we have only explored simple constructions based on the original concepts, these con-
clusions are of a general nature and therefore must apply to any area of science.





Chapter 3

Properties and quantities

In this chapter we will introduce the idea of properties, which we use to label the possibilities
of an experimental domain. For example, we may use names to distinguish among people, fur
color to distinguish among cats, pressure to distinguish the state of a gas. In particular, we’ll
define a quantity as a property that has a magnitude: we can compare two different values
and determine which one is greater or smaller.

Instead of simply assuming we have quantities, we will need to construct them from the
verifiable statements of an experimental domain. To do that, we will prove three theorems that
will give necessary and sufficient conditions for that construction, clarifying how quantities are
defined experimentally. These theorems will allow us to understand how the ordering of the
values for a quantity are linked to the logical relationships between the verifiable statements,
and in particular how the ordering of values is linked to the ordering defined by narrowness.

After characterizing quantities in general, we will see the cases of discrete and contin-
uous quantities. We will see how discrete quantities are linked to decidability, the ability
to verify both a statement and its negation, while continuous quantities are linked to a lack
thereof. We will then discuss how the requirements for continuous quantities cannot be truly
realized in practice and what happens when that idealization fails.

3.1 Properties

Whether the result of direct observation or not, a physical object is most often identified by
its properties and their values. A person may be identified by name and date of birth; a bird
may be characterized by the color of its beak; the state of a particle may be qualified by its
position and momentum.

In this section we define how in general we can use properties to label the possibilities of an
experimental domain. Each property will specify a continuous function from the possibilities
to the topological space of the possible property values. Some properties may fully identify
each possibility, as they assign distinct values, and some may also fully characterize which
statements are verifiable.

Suppose DX is a domain for animal identification and X, its possibilities, are all animal
species. Providing good names and definitions for species is a whole scientific subject by itself
(i.e. taxonomy) with its own rules (i.e. the International Code of Zoological Nomenclature).
The ICZN assigns each species a name composed of two Latin words. For example, “Passer
domesticus” is the official name for the house sparrow while “Passer italiae” is the one for
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the Italian sparrow. This means that identifying an animal species is equivalent to identifying
its name. Therefore the domain to identify the species name DQ ≡ DX is equivalent to the
one for identifying the actual species and we have an experimental relationship q ∶ X → Q
between them. As each species is given a unique name this is the most discriminating type
of property: one that covers the whole range of possibilities and fully identifies each of them.
But this is a special case.

The ICZN also assigns a genus (pl. genera) to each species, which corresponds to the
first part of the species name. For example, both aforementioned sparrows are of the genus
“Passer” while all swans, black or white, are of the genus “Cygnus”. Now suppose that Q
is the set of all names for all genera and q ∶ X → Q is the function that gives us the genus
name for each species. We can still use this as a label for our possibilities, but it does not
fully identify them.

On a different note, we could decide to distinguish species by their morphological at-
tributes. For example, if Q is the set of all colors, we can imagine a function that gives us
the beak color for each species. The function is partial, not defined on all elements, as not all
species have a beak or its color may not be unique. We have q ∶ U → Q where U ⊆ X is the
set where the property is defined. To be consistent, though, we must at least be able to tell
in what cases the property is actually defined. For example, we must be able to tell whether
an animal has a beak. Therefore there must be a verifiable statement that is true if and only
if the property is well defined. The set U , then, must correspond to the verifiable set of said
statement.

Other examples of properties include: postal addresses for buildings, tax ID numbers for
people, generation for fundamental particles, position of the center of mass of a body. In all
these cases, the general pattern is that we assign a label to a possibility from an established
set.

Definition 3.1. A property for an experimental domain DX is any attribute we can use
to distinguish between its possibilities. Formally, it is a tuple (Q, q) where Q is a topological
space and q ∶ U →Q is a continuous function where U ∈ TX is a verifiable set of possibilities.

Justification. Suppose q is a physical property that can be assigned to distinguish the
set of possibilities U ⊆X. We must be able to tell experimentally whether the property is
defined for each possibility. Therefore we are justified to assume that U is a verifiable set.
Let Q be the set of possible values for the property. Each element U will be matched with
a possible value. Therefore we are justified to assume there is a function q ∶ X → Q that
specifies that mapping.

As we must be able to experimentally distinguish between the values in Q, there must
be a collection TQ of verifiable sets that corresponds to the possible verifiable statements
associated to the quantity. Therefore we are justified to assume Q is a topological space.
Moreover, since the property value is determined by each possibility, the function q estab-
lishes a causal relationship between the two and therefore we are justified to assume q is a
continuous function.

Note that we have not defined a property as an experimental domain. The possibility
of the domain for a property would be a statement like “the species name for this animal is
Passer domesticus” while the value is just the object “Passer domesticus”. The idea is that
the property and its values are defined independently of the particular object. For example,
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distance in meters is defined independently of whether we later want to measure the earth
diameter or its distance to the moon.1

The fact that the property and its values are defined more generally leads to some subtle
issues: even if each possibility of the domain corresponds to one property value and each
verifiable statement of the property is equivalent to a verifiable statement of the domain, the
reverse may not be true. Consider the experimental domain for identifying negatively charged
fundamental particles. In this case, each particle will correspond to a unique value of mass,
and by measuring the mass we can infer the particle. But for each possible value of mass
we will not have a possible fundamental particle. Moreover, the verifiable statement “this
particle is an electron” would correspond to an infinitely precise statement of the form “the
mass of the particle is exactly 510998.9461... eV” which is not verifiable. The reason is that
identifying a negatively charged particle is not the same as measuring its mass with arbitrary
precision: in the first case we can stop when there is only one possible particle within the
finite range of our measurement. Now consider the experimental domain for the position of
the center of mass of a particle along a particular direction. Not only is the distance from a
fixed point enough to identify the position, but for each value of the distance we also have a
possible position of the particle.

We say that a property fully characterizes an experimental domain if each possible value
of a property corresponds to a possibility of the domain, like in the case of the distance from
a reference and position of a particle. The idea is that it tells us what cases are possible
and how they are experimentally verified. Instead, we say that a property fully identifies an
experimental domain if each possibility corresponds to a unique value, like in the case of the
mass of a negatively charged particle. The idea is that the value of the property allows us to
uniquely identify the possibility but nothing more.

Definition 3.2. The possibilities of an experimental domain are fully identified by a
property if its value is enough to uniquely determine a possibility. Formally, let (Q, q) be
a property for an experimental domain DX . Then the possibilities X are fully identified if
q ∶X →Q is injective.

Definition 3.3. An experimental domain is fully characterized by a property if all
verifiable statements in the domain correspond to verifiable statements on the property and
vice-versa. Formally, let (Q, q) be a property for an experimental domain DX . Then it is
fully characterized if q ∶X →Q is a homeomorphism.

3.2 Quantities and ordering

We now focus our attention on those properties that can be quantified. The number of people
in a group can be quantified by an integer, the distance between two objects can be quantified
in meters, the force acting on a body can be quantified by the magnitude of a vector expressed

1While in principle we could envision a formal construction of properties and their values purely built
on top of the notion of statement (e.g. define the value red to be the set of all statements that claim that
something is of that color) we are not going to do so. While appealing in some respects, it is not clear whether
such a construction would actually help to clarify underlying assumptions while it is clear it would distract
from other more critical issues.
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in Newtons. The defining characteristic for a quantity is that a value can be greater, smaller
or equal to another.

In this section we will define a quantity as a property with a linear order which we assume
given a priori, and study its relationship with the experimental domain. We will define the
order topology, which assumes one can experimentally verify whether a value is before or
after another one. We will see that a domain is fully characterized by a quantity only if
the possibilities themselves can be ordered, and how this ordering, in the end, is uniquely
characterized by statement narrowness: 10 is less than 42 because “the quantity is less than
10” is narrower than “the quantity is less than 42”.

As the defining characteristic for a quantity is the ability to compare its values, then the
values must be ordered in some fashion from smaller to greater. Therefore, given two different
values, one must be before the other. Mathematically, we call linear order an order with such
a characteristic as we can imagine the elements positioned along a line. Note that vectors
are not linearly ordered: no direction is greater than the other. Therefore, in this context, a
vector will not strictly be a quantity but a collection of quantities.2

We also have to define how this order can be experimentally verified. The idea is that we
should, at least, be able to verify that the value of a given quantity is before or after a set
value. This allows us to construct bounds such as “the mass of the electron is 511± 0.5 keV”
which we take to be equivalent to “the mass of the electron is more than 510.5 keV but less
than 511.5 keV”.3 For integers, this also allows us to verify particular numbers as “the earth
has one natural satellite” is equivalent to the “the earth has more than zero natural satellites
and fewer than two”. Therefore we will define the order topology as the one generated by sets
of the type (a,∞) and (−∞, b).

A quantity, then, is an ordered property with the order topology.

Definition 3.4. A linear order on a set Q is a relationship ≤∶ Q ×Q → B such that:

1. (antisymmetry) if q1 ≤ q2 and q2 ≤ q1 then q1 = q2

2. (transitivity) if q1 ≤ q2 and q2 ≤ q3 then q1 ≤ q3

3. (total) at least q1 ≤ q2 or q2 ≤ q1

A set together with a linear order is called a linearly ordered set.

Definition 3.5. Let (Q,≤) be a linearly ordered set. The order topology is the topology
generated by the collections of sets of the form:

(a,∞) = {q ∈ Q ∣a < q} , (−∞, b) = {q ∈ Q ∣ q < b}.

2In other languages, there are two words to differentiate quantity as in “physical quantity” (e.g. grandezza,
Grösse, grandeur) and as in “amount” (e.g. quantità, Menge, quantité). It is the second meaning of quantity
that is captured here.

3The sentence “the mass of the electron is 511±0.5 keV” could instead be referring to statistical uncertainty
instead of an accuracy bound and would constitute a different statement when the different meaning is attached.
We will be treating these types of statistical statements later in the book, but suffice it to say that they cannot
be defined before statements that identify bounds.
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Definition 3.6. A quantity for an experimental domain DX is a linearly ordered property.
Formally, it is a tuple (Q,≤, q) where (Q, q) is a property, ≤∶ Q ×Q → B is a linear order
and Q is a topological space with the order topology with respect to ≤.

As for properties, the quantity values are just symbols used to label the different cases. The
set Q may correspond to the integers, real numbers or a set of words ordered alphabetically.4

The units are not captured by the numbers themselves: they are captured by the function q
that allows us to map statements to numbers and vice-versa.

As we want to understand quantities better, we concentrate on those experimental domains
that are fully characterized by a quantity. For example, the domain for the mass of a system
will be fully characterized by a real number greater than or equal to zero. Each possibility
will be identified by a number which will correspond to the mass expressed in a particular
unit, say in Kg. As the values of the mass are ordered, we can also say that the possibilities
themselves are ordered. That is, “the mass of the system is 1 Kg” precedes “the mass of the
system is 2 Kg”. This ordering of the possibilities will be linked to the natural topology as
“the mass of the system is less than 2 Kg”, the disjuction of all possibilities that come before
a particular possibility, is a verifiable statement.

We call a natural order for the possibility a linear order on them such that the order
topology is the natural topology. An experimental domain is fully characterized by a quantity
if and only if it is naturally ordered and that quantity is ordered in the same way: it is order
isomorphic. In other words, we can only assign a quantity to an experimental domain if it
already has a natural ordering of the same type.

Definition 3.7. Let DX be an experimental domain and X its possibilities. We say ≤∶
X ×X → B is a natural order for the possibilities of the domain if the order topology
constructed from that ordering coincides with the natural topology. We say the domain and
the possibilities are naturally ordered if they admit a natural order.

Definition 3.8. Let (Q,≤) and (P,≤) be two ordered sets. A function f ∶ Q → P is
increasing if for every q1, q2 ∈ Q, q1 ≤ q2 implies f(q1) ≤ f(q2). It is an order isomor-
phism if it is bijective and, for every q1, q2 ∈ Q, q1 ≤ q2 if and only if f(q1) ≤ f(q2).

Theorem 3.9 (Property ordering theorem). An experimental domain DX is fully charac-
terized by a quantity (Q,≤, q) if and only if it is naturally ordered and the possibilities are
order isomorphic to the quantity.

Proof. Suppose DX is fully characterized by a quantity (Q,≤q, q). Since q is a bijection,
we can define an ordering ≤x∶ X ×X → B such that x1 ≤x x2 if and only if q(x1) ≤q q(x2).
As q is now an order isomorphism, sets of the type (q1,∞) will be mapped to (q−1(q1),∞),
and sets of the type (−∞, q2) will be mapped to (−∞, q−1(q2)) for all q1, q2 ∈ Q. As q
is also a homeomorphism, it will map a basis of one space to and only to a basis of the
other. This means the collection of sets of the type (x1,∞) and (−∞, x2) form a basis,
and therefore the ordering ≤x is a natural order.

4When consulting the dictionary, we use the fact that we can experimentally tell whether the word we are
looking for is before or after the one we randomly selected.
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We can run the argument in reverse, by assuming we have a naturally ordered exper-
imental domain, finding a set Q that is order isomorphic to the possibility and showing
that the topology induced by the isomorphism is the order topology.

Now that we have established that the linear ordering is something already present in the
domain, we can show it is actually based on the ordering of verifiable statements in terms
of narrowness. That is, “the mass of the system is 1 Kg” is before “the mass of the system
is 2 Kg” precisely because “the mass of the system is less than 1 Kg” is narrower than “the
mass of the system is less than 2 Kg”. The set of statements Bb of the form “the mass of the
system is less than q1 Kg” are linearly ordered by narrowness, and their ordering is the same
as the ordering of the possibilities/values. Similarly, the set of statements Ba of the form “the
mass of the system is more than q1 Kg” is also ordered by narrowness but with the reverse
ordering of the possibilities/values. These are the very statements whose verifiable sets define
the order topology and therefore jointly constitute a basis for the experimental domain.

Now consider the statement s1 =“the mass of the system is less than or equal to 1 Kg”
with s2 =“the mass of the system is less than 1 Kg”. We have s2 ≼ s1. In fact, if we replace
the value in s2 with anything less than 1 Kg we’ll still have s2 ≼ s1. Instead if we use a value
greater than 1 Kg we’d have s1 ≼ s2. In other words, if we call B the set that includes both
the less-than-or-equal and less-than statements this is also linearly ordered by narrowness.
But “the mass of the system is less than or equal to 1 Kg” is equivalent to ¬“the mass of the
system is greater than 1 Kg”. In other words, B = Bb ∪¬(Ba) contains all the statements like
“the mass of the system is less than q1 Kg” and ¬“the mass of the system is more than q1

Kg” and these are all linearly ordered by narrowness.
The ordering of B can be further characterized. Note that s1 =“the mass of the system

is less than or equal to 1 Kg” is the immediate successor of s2 =“the mass of the system is
less than 1 Kg”. That is, they are different and there can’t be any other statement in B that
is broader than s2 but narrower than s1 since they differ for a single case. This will happen
for any mass value. So B is composed of two exact copies of the ordering of X, where each
element of one copy is immediately followed by an element of the other copy. Moreover, if a
statement in B has an immediate successor, there must be only one case that separates the
two. If we call q1 the value of that case, then the statement must be of the form “the mass
of the system is less than q1 Kg” while its immediate successor is of the form “the mass of
the system is less than or equal to q1 Kg”: the successor is broader by just the possibility
associated with q1. Therefore statements in B that have an immediate successor must be in
Bb as well.

The main result is that the above characterization of the basis of the domain is necessary
and sufficient to order the possibilities. If an experimental domain has a basis composed of
two parts Bb and Ba such that B = Bb ∪ ¬(Ba) is linearly ordered by narrowness with those
characteristics, then the experimental domain is naturally ordered. The possibilities can be
written as x ≡ ¬sb ∧ ¬sa where sb ∈ Bb and ¬sa is the immediate successor. In fact, “the mass
of the system is 1 Kg” is equivalent to “the mass of the system is not less than 1 Kg and
not more than 1 Kg”. Note that, because of negation, the possibilities may not in general be
verifiable.

Definition 3.10. Let DX be a naturally ordered experimental domain and X its possibil-
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ities. We define the following notation: “x < x1”= ⋁
{x∈X ∣x<x1}

x, “x > x1”= ⋁
{x∈X ∣x>x1}

x,

“x ≤ x1”= ⋁
{x∈X ∣x≤x1}

x and “x ≥ x1”= ⋁
{x∈X ∣x≥x1}

x. That is, they represent statements like

“the value of the quantity x is less than x1”.

Corollary 3.11. Based on the previous notation, “x ≤ x1” ≡ ¬“x > x1” and “x ≥ x1” ≡
¬“x < x1”.

Proof. Note that “x ≤ x1” ∨ “x > x1” ≡ ⋁
x∈X

x ≡ ⊺ while “x ≤ x1” ∧ “x > x1” ≡ ⋁
x∈∅

x ≡ �.

Therefore one is the negation of the other. Similarly “x < x1” ∨ “x ≥ x1” ≡ ⋁
x∈X

x ≡ ⊺ while

“x < x1” ∧ “x ≥ x1” ≡ ⋁
x∈∅

x ≡ �.

Definition 3.12. Let DX be a naturally ordered experimental domain and X its possibili-
ties. Define Bb = {“x < x1” ∣x1 ∈X}, Ba = {“x > x1” ∣x1 ∈X} and B = Bb ∪ ¬(Ba).

Definition 3.13. Let (Q,≤) be an ordered set. Let q1, q2 ∈ Q. Then q2 is an immediate
successor of q1 and q1 is an immediate predecessor of q2 if there is no element strictly
between them in the ordering. That is, q1 < q2 and there is no q ∈ Q such that q1 < q < q2.
Two elements are consecutive if one is the immediate successor of the other.

Proposition 3.14. Let DX be a naturally ordered experimental domain. Then (Bb,≼),
(Ba,≽) and (B,≼) are linearly ordered sets. Moreover (Bb,≼), (Ba,≽) are order isomorphic
to (X,≤).

Proof. Let f ∶ X → Bb be defined such that f(x1) = “x < x1”. As there is one and
only one statement “x < x1” for each x1 ∈ X, f is a bijection. Suppose x1 ≤ x2, we

have f(x2) ≡ ⋁
{x∈X ∣x<x2}

x ≡ ( ⋁
{x∈X ∣x<x1}

x) ∨ ( ⋁
{x∈X ∣x<x2}

x) ≡ f(x1) ∨ f(x2) and therefore

f(x1) ≼ f(x2). On the other hand if f(x1) ≼ f(x2) then as sets (−∞, x1) ⊆ (−∞, x2) which
means x1 ≤ x2. This means that f is an order isomorphism between (Bb,≼) and (X,≤).

Similarly, let g ∶ X → Ba be defined such that g(x1) = “x > x1”. As there is one
and only one statement “x > x1” for each x1 ∈ X, g is a bijection. Suppose x1 ≤ x2, we

have g(x1) ≡ ⋁
{x∈X ∣x>x1}

x ≡ ( ⋁
{x∈X ∣x>x1}

x) ∨ ( ⋁
{x∈X ∣x>x2}

x) ≡ g(x1) ∨ g(x2) and therefore

g(x1) ≽ g(x2). On the other hand if g(x1) ≽ g(x2) then as sets (x1,∞) ⊇ (x2,∞) which
means x1 ≤ x2. This means that g is an order isomorphism between (Ba,≽) and (X,≤).

To show that B is linearly ordered, let x1, x2 ∈X. If they both come from either Bb or
¬(Ba) then they are already ordered by narrowness. If not, consider the two statements
“x < x1” and “x ≤ x2” ≡ ¬“x > x2”. As X is linearly ordered, either {x ∈ X ∣x < x1} ⊆ {x ∈
X ∣x ≤ x2} or {x ∈ X ∣x ≤ x2} ⊆ {x ∈ X ∣x < x1}. Therefore either “x < x1” ≼ “x ≤ x2” or
“x ≤ x2” ≼ “x < x1”. Which means B = Bb ∪ ¬(Ba) is linearly ordered by ≼.

Proposition 3.15. Let Bb and Ba be two sets of verifiable statements such that B =
Bb ∪ ¬(Ba) is linearly ordered by narrowness. Let Db and Da be the experimental domains
they respectively generate and D = Db∪¬(Da). Then (Db,≼), (Da,≽) and (D,≼) are linearly
ordered.
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Proof. First we show that (Db,≼) is linearly ordered. We have that Bb is linearly ordered
by narrowness because it is a subset of B which is linearly ordered by narrowness. Note
that the conjunction of a finite set of statements linearly ordered by narrowness will return
the narrowest element and the disjunction of a finite set of statements linearly ordered
by narrowness will return the broadest element. The countable disjunction, instead, can
introduce new elements. But using those elements again will not introduce new ones:
the disjunction of countable disjunctions will still be a countable disjunction; the finite
conjunction of countable disjunctions is the countable disjunction of finite conjunctions,
which returns elements of the original set and therefore reduces to countable conjunctions.
Therefore, when forming Db the only new elements will be the countable disjunctions.

Consider two countable sets B1,B2 ⊆ Bb. Their disjunctions b1 = ⋁
b∈B1

b and b2 = ⋁
b∈B2

b

represent the narrowest statement that is broader than all elements of the respective set.
Suppose that for each element of B1 we can find a broader element in B2. Then b2, being
broader than all elements of B2, will be broader than all elements of B1. But since b1 is
the narrowest element that is broader than all elements in B1, we have b2 ≽ b1. Conversely,
suppose there is some element in B1 for which there is no broader element in B2. Since
the initial set is fully ordered, it means that that element of B1 is broader than all the
elements in B2. This means that element is broader than b2 and since b1 is broader than
all elements in B1 we have b1 ≽ b2. Therefore the domain Db generated by Bb is linearly
ordered by narrowness.

Now we show that (Da,≽) is linearly ordered. The basis Ba is linearly ordered by
broadness because the negation of its elements are part of B and are ordered by narrowness.
Note that broadness is the opposite order of narrowness and therefore a set linearly ordered
by one is linearly ordered by the other. Therefore Ba is also linearly ordered by narrowness
and so is Da by the previous argument. Therefore Da is ordered by broadness.

To show that D = Db ∪ ¬(Da) is linearly ordered by narrowness, we only need to show
that the countable disjunctions of elements of Bb are either narrower or broader than the
countable conjunctions of the negations of elements of Ba. Let B1 ⊂ Bb and A2 ⊂ Ba. The
disjunction b1 = ⋁

b∈B1

b represents the narrowest statement that is broader than all elements

of B1 while the conjunction ¬a2 = ¬ ⋁
a∈A2

a = ⋀
a∈A2

¬a represents the broadest statement that

is narrower than all elements of ¬(A2). Suppose that for one element of ¬(A2) we can
find a broader statement in B1. Then b1, being broader than all elements in B1, will be
broader than that one element in ¬(A2). But since ¬a2 is narrower than all elements in
¬(A2), we have ¬a2 ≼ b1. Conversely, suppose that for no element of ¬(A2) we can find a
broader statement in B1. As B is linearly ordered, it means that all elements in ¬(A2) are
broader than all elements in B1. This means that all elements in ¬(A2) are broader than
b1 and therefore b1 ≼ ¬a2. Therefore D is linearly ordered by narrowness.

Theorem 3.16 (Domain ordering theorem). An experimental domain DX is naturally
ordered if and only if it is the combination of two experimental domains DX = Da×Db such
that:

(i) D = Db ∪ ¬(Da) is linearly ordered by narrowness
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(ii) all elements of D are part of a pair (sb,¬sa) such that sb ∈ Db, sa ∈ Da and ¬sa is
either the immediate successor of sb in D or sb ≡ ¬sa

(iii) if s ∈D has an immediate successor, then s ∈ Db

Proof. Let DX be a naturally ordered experimental domain. Let Bb and Ba be defined
as in 3.12 which means B = Bb ∪ Ba is the basis that generates the order topology. Let
Db be the domain generated by Bb and Da be the domain generated by Ba. Then DX is
generated from Db and Da by finite conjunction and countable disjunction and therefore
DX = Db ×Da.

To prove (i), we have that Bb and Ba are linearly ordered by 3.14. We need to show that
the linear ordering holds across the sets. Let x1, x2 ∈ X and consider the two statements
“x < x1” and “x ≤ x2” ≡ ¬“x > x2”. As X is linearly ordered, either {x ∈ X ∣x < x1} ⊆ {x ∈
X ∣x ≤ x2} or {x ∈ X ∣x ≤ x2} ⊆ {x ∈ X ∣x < x1}. Therefore either “x < x1” ≼ “x ≤ x2” or
“x ≤ x2” ≼ “x < x1”. Which means B = Bb ∪¬(Ba) is linearly ordered by ≼. By 3.15 the set
D = Db ∪ ¬(Da) is also linearly ordered.

To prove (ii), let sb ∈ Db. Take sa ∈ Da such that ¬sa is the narrowest statement in
¬(Da) that is broader than sb. This exists because Da is closed by infinite disjunction. As
¬sa ≽ sb, let X1 be the set of possibilities compatible with ¬sa but not compatible with sb.
The set cannot have more than one element, or we could find an element x1 ∈X1 such that
sb ≼ “x ≤ x1” ≺ ¬sa. If X1 contains one possibility, then ¬sa is the immediate successor. If
X1 is empty then sb ≡ ¬sa. Similarly, we can start with sa ∈ Da and find sb ∈ Db such that sb
is the broadest statement in Db that is narrower than ¬sa. Let X1 be the set of possibilities
compatible with ¬sa but not compatible with sb. If X1 contains one possibility, then ¬sa
is the immediate successor and if X1 is empty then sb ≡ ¬sa.

To prove (iii), let s1, s2 ∈ D such that s2 is the immediate successor of s1. This means
we can write s2 ≡ s1 ∨x1 for some x1 ∈X. This means s1 ≡ “x < x1” while s2 ≡ “x ≤ x1” and
therefore s1 ∈ Bb.

Now we need to prove the opposite direction. Now let DX = Db×Da be an experimental
domain as described in the theorem. Let X be the set of all statements of the form
x = ¬sb ∧ ¬sa for which sb ∈ Db, sa ∈ Da and ¬sa is the immediate successor of sb in D.
All statements in X are possibilities. In fact, take x = ¬sb ∧ ¬sa ∈ X and s ∈ D. It is not
impossible because sb ≺ ¬sa. Since ¬sa is the immediate successor of sb, we either have
s ≼ sb ≼ sb ∨ sa ≡ ¬x or s ≽ ¬sa ≽ x. That is, x � s or x ≼ s. And since the theoretical domain
of DX can be generated from D, x is either narrower than or incompatible with any other
statement in the theoretical domain. Therefore x is a possibility.

Now we show that X, as defined, covers all possibilities. Let x be a possibility for Dx.
Let Fx = {s ∈D∣x � s} and Tx = {s ∈D ∣x ≼ s}. Since x is a possibility Fx ∪Tx =D and since
D is linearly ordered, s1 ≺ s2 for all s1 ∈ Fx and s2 ∈ Tx. Let fx = ⋁

s∈Fx

s and tx = ⋀
s∈Tx

s. To

see that fx ∈ D, let f′x = ⋁
s∈Fx∩Db

s. This will be in Fx as it is in Db and will be false if x is

true. Because of (ii), there can be only one statement in Fx ∩ ¬(Da) that is broader than
f′x but narrower than the other elements of Db that are not in Fx, therefore fx is in D as it
has been reduced to a finite disjunction. Similarly, tx ∈ D. Let t′x = ⋀

s∈Tx∩¬(Da)

s. This will

be in Tx as it is in ¬(Da) and will be true if x is true. Because of (ii), there can be only
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one statement in Tx ∩Db that is narrower than t′x but broader than the other elements of
Da that are not in Tx, therefore tx is in D as it has been reduced to a finite conjunction.

Consider ¬fx∧tx: if true then fx will be false, and so will all statements in Fx since they
are narrower; also tx will be true, and so will all statements in Tx since they are broader.
We have x ≡ ¬fx∧ tx. Since x is not impossible, fx ≢ tx. Since all statements in D are either
in Fx or Tx, tx is the immediate successor of fx. Therefore by (iii) fx ∈ Db, ¬tx ∈ Da and
x ∈X.

Now we show that X can be given a natural ordering. Let Bb ⊆ Db be the set of
statements that have an immediate successor in D and Ba ⊆ Da be the set of the negation
of the immediate successors. Let (⋅)++ ∶ Bb → Ba be the function such that ¬(b++) = ¬b++ is
the immediate successor of b. Let b ∶X → Bb be the function such that x ≡ ¬b(x)∧¬b(x)++.
On X define the ordering ≤ such that x1 ≤ x2 if and only if b(x1) ≼ b(x2). Since (Bb,≼)
is linearly ordered so is (X,≤). To show that the ordering is natural, suppose x1 < x2

then b(x1) ≺ ¬b(x1)++ ≼ b(x2) and therefore x1 ≼ b(x2). We also have ¬b(x1)++ ≼ b(x2) ≺
¬b(x2)++ and therefore x2 ≼ b(x1)++. This means that given a possibility x1 ∈ X, all and
only the possibilities lower than x1 are compatible with b(x1) and therefore b(x1) ≡ “x <
x1”, while all and only the possibilities greater than x1 are compatible with b(x1)++ and
therefore b(x1)++ ≡ “x > x1”. The topology is the order topology and the domain has a
natural ordering.

3.3 References and experimental ordering

In the previous section we have characterized what a quantity is and how it relates to an
experimental domain. But as we saw in the first chapters, the possibilities of a domain are
not objects that exist a priori: they are defined based on what can be verified experimentally.
Therefore simply assigning an ordering to the possibilities of a domain does not answer the
more fundamental question: how are quantities actually constructed? How do we, in practice,
create a system of references that allows us to measure a quantity at a given level of precision?
What are the assumptions we make in that process?

In this section we construct ordering from the idea of a reference that physically defines
a boundary between a before and an after. In general, a reference has an extent and may
overlap with others. We define ordering in terms of references that are clearly before and
after others. We see that the possibilities have a natural ordering only if they are generated
from a set of references that is refinable (we can always find finer ones that do not overlap)
and for which before/on/after are mutually exclusive cases. The possibilities, then, are the
finest references possible.

We are by now so used of the ideas of real numbers, negative numbers and the number zero
that it is difficult to realize that these are mental constructs that are, in the end, somewhat
recent in the history of humankind. Yet geometry itself started four thousand years ago as
an experimentally discovered collection of rules concerning lengths, areas and angles. That
is, human beings were measuring quantities well before the real numbers were invented. So,
how does one construct instruments that measure values?

To measure position, we can use a ruler, which is a series of equally spaced marks. We
give a label to each mark (e.g. a number) and note which two marks are closest to the target
position (e.g. between 1.2 and 1.3 cm). To measure weight, we can use a balance and a set of
equally prepared reference weights. The balance can clearly tell us whether one side is heavier
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than the other, so we use it to compare the target with a number of reference weights and
note the two closest (e.g. between 300 and 400 grams). A clock gives us a series of events to
compare to (e.g. earth’s rotation on its axis, the ticks of a clock). We can pour water from
a reference container into another as many times as are needed to measure its volume. In all
these cases what actually happens is similar: we have a reference (e.g. a mark on a ruler,
a set of equally prepared weights, a number of ticks of a clock) and it is fairly easy to tell
whether what we are measuring is before (e.g shorter, lighter, sooner) or after (e.g. longer,
heavier, later) the reference.

Note that determining whether the quantity is exactly equal to the reference is not as easy:
the mark on the ruler has a width, the balance has friction, the tick of our clock will last a
finite amount of time. That is, the reference itself can only be compared up to a finite level
of precision. This may be a problem when constructing the references themselves: how do we
know that the marks on our ruler are equally spaced, or that the weights are equally prepared,
or that ticks of our clock are equally timed? It is a circular problem in the sense that, in a
way, we need instruments of measurement to be able to create instruments of measurement.
Yet, even if our references can’t be perfectly compared and are not perfectly equal, we can
still say whether the value is well before or well after any of them.

To make matters worse, the object we are measuring may itself have an extent. If we
are measuring the position of a tiny ball, it may be clearly before or clearly after the nearest
mark, but it may also be partly before, partly on and partly after. One may try to sidestep
the problem by measuring part of the object, say the position of the center of mass or of its
closest part. But this assumes we have a process to interact with only part of the object, and
that part can only be before, on or after the reference. It may be a reasonable assumption in
many cases but we have to be mindful that we made that assumption: our general definition
will have to be able to work in the less ideal cases.

In our general mathematical theory of experimental science, we can capture the above
discussion with the following definitions. A reference is represented by a set of three state-
ments: they tell us whether the object is before, on or after a specific reference. To make
sense, these have to satisfy the following minimal requirements. The before and the after
statements must be verifiable, as otherwise they would not be usable as references. As the
reference must be somewhere, the on statement cannot be an impossibility. If the object is
not before and not after the reference, then it must be on the reference. If the object is before
and after the reference, then it must also be on the reference. These requirements recognize
that, in general, a reference has an extent and so does the object being measured.

We can compare the extent of two references and say that one is finer than the other if
the on statement is narrower than the other, and the before and after statements are wider.
This corresponds to a finer tick of a ruler or a finer pulse in our timing system. We say that
a reference is strict if the before, on and after statements are incompatible. That is, the three
cases are distinct and can’t be true at the same time.

Definition 3.17. A reference defines a before, an on and an after relationship between
itself and another object. Formally a reference r = (b,o, a) is a tuple of three statements
such that:

1. we can verify whether the object is before or after the reference: b and a are verifiable
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statements
2. the object can be on the reference: o ≢ �
3. if it’s not before or after, it’s on the reference: ¬b ∧ ¬a ≼ o
4. if it’s before and after, it’s also on the reference: b ∧ a ≼ o

A beginning reference has nothing before it. That is, b ≡ �. An ending reference has
nothing after it. That is, a ≡ �. A terminal reference is either beginning or ending.

Corollary 3.18. Let (b,o, a) be a reference. Then b ∨ o ∨ a ≡ ⊺.

Proof. By definition, we have ¬b∧¬a ≼ o and by 1.22 ¬(¬b∧¬a) ∨ o ≡ ⊺ ≡ b∨ a∨ o.

Definition 3.19. A reference r1 = (b1,o1, a1) is finer than another reference r2 = (b2,o2, a2)
if b1 ≽ b2, o1 ≼ o2 and a1 ≽ a2.

Corollary 3.20. The finer relationship between references is a partial order.

Proof. As the finer relationship is directly based on narrowness, it inherits its reflexivity,
antisymmetry and transitivity properties and is therefore a partial order.

Definition 3.21. A reference is strict if its before, on and after statements are incom-
patible. Formally, r = (b,o, a) is such that b � a and o ≡ ¬b ∧ ¬a. A reference is loose if it
is not strict.

Remark. In general, we can’t turn a loose reference into a strict one. The on statement
can be made strict by replacing it with ¬b∧¬a. This is possible because o is not required to
be verifiable. The before (and after) statements would need to be replaced with statements
like b ∧ ¬a, which are not in general verifiable because of the negation.

To measure a quantity we will have many references one after the other: a ruler will have
many marks, a scale will have many reference weights, a clock will keep ticking. What does
it mean that a reference comes after another in terms of the before/on/after statements?

If reference r1 is before reference r2 we expect that if the value measured is before the
first it will also be before the second, and if it is after the second it will also be after the first.
Note that this is not enough, though, because as references have an extent they may overlap.
And if they overlap one can’t be after the other. To have an ordering properly defined we
must have that the first reference is entirely before the second. That is, if the value measured
is on the first it will be before the second and if it is on the second it will be after the first.

Mathematically, this type of ordering is strict in the sense that it defines what is strictly
before and strictly after. It does not define what happens in the overlap, in between cases.
One may be tempted to define the ordering based on how the references overlap, but that
requires refining the references and, in the end, it means we are defining an ordering on those
refined references, not the original ones.

Definition 3.22. A reference is before another if whenever an object is found before or on
the first it cannot be on or after the second. Formally, r1 < r2 if and only if b1∨o1 � o2∨a2.

Proposition 3.23. Reference ordering satisfies the following properties:
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� irreflexivity: not r < r
� transitivity: if r1 < r2 and r2 < r3 then r1 < r3

and is therefore a strict partial order.

Proof. For irreflexivity, since the on statement can’t be impossible, we have o � o and
therefore b ∨ o � o ∨ a. Therefore a reference is not before itself and the relationship is
irreflexive.

For transitivity, if r1 < r2, we have b1 ∨ o1 � o2 ∨ a2 and therefore ¬(b1 ∨ o1) ≽ o2 ∨ a2

by 1.22. Since b1 ∨ o1 ∨ a1 ≡ ⊺, we have a1 ≽ ¬(b1 ∨ o1). Similarly if r2 < r3 we’ll have
a2 ≽ ¬(b2∨o2) ≽ o3∨a3. Putting it all together ¬(b1∨o1) ≽ o2∨a2 ≽ a2 ≽ ¬(b2∨o2) ≽ o3∨a3,
which means b1 ∨ o1 � o3 ∨ a3.

Corollary 3.24. The relationship r1 ≤ r2, defined to be true if r1 < r2 or r1 = r2, is a
partial order.

As we saw, two references may overlap and therefore an ordering between them cannot be
defined. But references can overlap in different ways.

Suppose we have a vertical line one millimeter thick and call the left side the part before
the line and the right side the part after. We can have another vertical line of the same
thickness overlapping but we can also have a horizontal line which will also, at some point,
overlap. The case of the two vertical lines is something that, through finding finer references,
can be given a linear order. The case of the vertical and horizontal line, instead, cannot.
Intuitively, the vertical lines are aligned while the horizontal and vertical are not.

Conceptually, the overlapping vertical lines are aligned because we can imagine narrower
lines around the borders, and those lines will be ordered references in the above sense: each
line would be completely before or after, without intersection. This means that the before and
not-after statements of one reference are either narrower or broader than the before and not-
after statements of the other. That is, alignment can also be defined in terms of narrowness
of statements.

Note that if a reference is strict, before and after statements are not compatible and
therefore the before statement is narrower than the not-after statement. This means that,
given a set of aligned strict references, the set of all before and not-after statements is linearly
ordered by narrowness. As we saw in the previous section, this was a necessary condition
for the possibilities of a domain to be ordered and therefore aligned strict references play a
crucial role.

Definition 3.25. Two references r1 = (b1,o1, a1) and r2 = (b2,o2, a2) are aligned if for
any s1 ∈ {b1,¬a1} and s2 ∈ {b2,¬a2} we have s1 ≼ s2 or s2 ≼ s1. A set R of references is
aligned if any pair of references is aligned.

Proposition 3.26. Let R = {(bi,oi, ai)}i∈I be a set of aligned strict references. Let Bb =
{bi}i∈I and Ba = {ai}i∈I be respectively the sets of before and after statements. Then the
set B = Bb ∪ ¬(Ba) is linearly ordered by narrowness.

Proof. Let R be a set of aligned strict references. Let s1, s2 ∈ B. Suppose they are taken
from the same reference. If they are both before statements or both after statements, we
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have s1 ≡ s2 and therefore s1 ≼ s2. If one is the before statement and the other is the
not-after statement, since the reference is strict, we have b � a and b ≼ ¬a by 1.22 and
therefore s1 ≼ s2 or s2 ≼ s1. Now suppose they are taken from different references. Since
they are aligned we have s1 ≼ s2 or s2 ≼ s1 by definition.

Proposition 3.27. Let r1 = (b1,o1, a1) and r2 = (b2,o2, a2) be two references. If r1 < r2

then b1 ≼ b2, a2 ≼ a1, b1 ≼ ¬a2, ¬a1 ≼ b2 and therefore the two references are aligned.

Proof. We have b1 ∨ o1 ≡ (b1 ∨ o1) ∧ ⊺ ≡ (b1 ∨ o1) ∧ (b2 ∨ o2 ∨ a2) ≡ ((b1 ∨ o1) ∧ b2) ∨
((b1 ∨ o1) ∧ (o2 ∨ a2)) ≡ ((b1 ∨ o1) ∧ b2) ∨ � ≡ (b1 ∨ o1) ∧ b2. Therefore b1 ∨ o1 ≼ b2. And
since b1 ≼ b1 ∨ o1, we have b1 ≼ b2.

Similarly, we have o2 ∨ a2 ≡ (o2 ∨ a2) ∧ ⊺ ≡ (o2 ∨ a2) ∧ (b1 ∨ o1 ∨ a1) ≡ ((o2 ∨ a2) ∧ (b1 ∨
o1))∨ ((o2 ∨ a2)∧ a1) ≡ �∨((o2 ∨ a2)∧ a1) ≡ (o2 ∨ a2)∧ a1. Therefore a2 ∨o2 ≼ a1. And since
a2 ≼ o2 ∨ a2, we have a2 ≼ a1.

Since b1 ∨ o1 � o2 ∨ a2, we have b1 � a2 which means b1 ≼ ¬a2.
Since b1∨o1∨a1 ≡ ⊺, we have ¬a1 ≼ b1∨o1. Similarly ¬b2 ≼ o2∨a2. Since b1∨o1 � o2∨a2,

¬a1 � ¬b2 and therefore ¬a1 ≼ b2.
Since b1 ≼ b2, a2 ≼ a1, b1 ≼ ¬a2 and ¬a1 ≼ b2, the two references are aligned.

Proposition 3.28. Let r1 = (b1,o1, a1) and r2 = (b2,o2, a2) be two strict references. Then
r1 < r2 if and only if ¬a1 ≼ b2 .

Proof. Let r1 < r2. By 3.27, we have ¬a1 ≼ b2. Conversely, let ¬a1 ≼ b2. Then ¬a1 � ¬b2.
Because the references are strict, ¬a1 ≡ b1 ∨o1 and ¬b2 ≡ o2 ∨ a2. Therefore b1 ∨o1 � o2 ∨ a2

and r1 < r2 by definition.

Definition 3.29. A reference is the immediate predecessor of another if nothing can be
found before the second and after the first. Formally, r1 < r2 and a1 � b2. Two references
are consecutive if one is the immediate successor of the other.

Proposition 3.30. Let r1 = (b1,o1, a1) and r2 = (b2,o2, a2) be two references. If r1 is
immediately before r2 then b2 ≡ ¬a1.

Proof. Let r1 be immediately before r2. Then a1 � b2 which means b2 ≼ ¬a1. By 3.27
we also have ¬a1 ≼ b2. Therefore b2 ≡ ¬a1.

Proposition 3.31. Let r1 = (b1,o1, a1) and r2 = (b2,o2, a2) be two strict references. Then
r1 is immediately before r2 if and only if b2 ≡ ¬a1.

Proof. Let r1 be immediately before r2. Then b2 ≡ ¬a1 by 3.30. Conversely, let b2 ≡ ¬a1.
Then r1 < r2 by 3.28. We also have a1 � ¬a1, therefore a1 � b2 and r1 is immediately before
r2 by definition.

If we have a set of references, we can generate an experimental domain by using the before
and after statements as the basis. More specifically we can take all the before statements and
generate the before domain Db and all the after statements and generate the after domain
Da. If the references are all strict and aligned, the set D = Db ∪ ¬(Da) of all the before and
not-after statements will be linearly ordered by narrowness. We recognize this as the first
requirement of the domain ordering theorem 3.16.
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Definition 3.32. Let R = {(bi,oi, ai)}i∈I be a set of references. Let Bb = {bi}i∈I be the set
of all before statements and Ba = {ai}i∈I be the set of all after statements. The experimental
domain D generated by R is the one generated by all before and after statements Bb ∪ Ba.
The before domain Db is the domain generated only by the before statements Bb and the
after domain Da is the domain generated only by the after statements Ba.

Definition 3.33. Let D be a domain generated by a set of references R. A reference
r = (b,o, a) is said to be aligned with D if b ∈ Db and a ∈ Da.

Proposition 3.34. Let D be an experimental domain generated by a set of aligned strict
references R and let D = Db ∪ ¬(Da). Then (D,≼) is linearly ordered.

Proof. By 3.26 we have that B = Bb ∪ ¬(Ba) is aligned by narrowness. By 3.15 the
ordering extends to D.

Having a set of aligned references is not necessarily enough to cover the whole space at all
levels of precision. To do that we need to make sure that, for example, between two references
that are not consecutive we can at least put a reference in between. Or that if we have two
references that overlap, we can break them apart into finer ones that do not overlap and one
is after the other.

We call a set of references refinable if the domain they generate has the above mentioned
properties. This allows us to break up the whole domain into a sequence of references that
do not overlap, are linearly ordered and that cover the whole space. As we get to the finest
references, their before statements will be immediately followed by the negation of their after
statements, since there can’t be any reference in between. Conceptually, this will give us the
second and the third condition of the domain ordering theorem 3.16.

Definition 3.35. Let D be an experimental domain generated by a set of aligned references
R. The set of references is refinable if, given two strict references r1 = (b1,o1, a1) and
r2 = (b2,o2, a2) aligned with D, we can always:

� find an intermediate one if they are not consecutive; that is, if r1 < r2 but r2 is not
the immediate successor of r1, then we can find a strict reference r3 aligned with D
such that r1 < r3 < r2.

� refine overlapping references if one is finer than the other; that is, if o2 ≺ o1, we can
find a strict reference r3 aligned with D such that o3 ≼ o1 and either b3 ≡ b1 and
r3 < r2 or a3 ≡ a1 and r2 < r3.

Proposition 3.36. Let D be an experimental domain generated by a set of refinable aligned
strict references R.

1. If b1,b2 ∈ Db such that b1 ≺ b2, then there exists a ∈ Da such that b1 ≺ ¬a ≼ b2.
2. If a1, a2 ∈ Da such that ¬a1 ≺ ¬a2, then there exists b ∈ Db such that ¬a1 ≼ b ≺ ¬a2.
3. If a1 ∈ Da and b2 ∈ Db such that ¬a1 ≺ b2, then there exists b ∈ Db and a ∈ Da such

that ¬a1 ≼ b ≺ ¬a ≼ b2.
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Proof. For the first, suppose b1,b2 ∈ Db such that b1 ≺ b2. Then r1 = (b1,¬b1,�) and
r2 = (b2,¬b2,�) are strict references aligned with the domain such that ¬b2 ≺ ¬b1. This
means we can find r3 = (b1,¬b1 ∧ ¬a, a) for some a ∈ Da such that r3 < r2 and therefore
b1 ≺ ¬a ≼ b2.

For the second, suppose a1, a2 ∈ Da such that ¬a1 ≺ ¬a2. Then r1 = (�,¬a2, a2) and
r2 = (�,¬a1, a1) are strict references aligned with the domain such that ¬a1 ≺ ¬a2. This
means we can find r3 = (b,¬b ∧ ¬a2, a2) for some b ∈ Db such that r3 < r2 and therefore
¬a1 ≼ b ≺ ¬a2.

For the third, suppose a1 ∈ Da and b2 ∈ Db such that ¬a1 ≺ b2. Then r1 = (�,¬a1, a1)
and r2 = (b2,¬b2,�) are strict references aligned with the domain such that r1 < r2 but r2

is not an immediate successor of r1. This means we can find r3 = (b,¬b ∧ ¬a, a) such that
r1 < r3 < r2 and therefore ¬a1 ≼ b ≺ ¬a ≼ ¬b2.

Proposition 3.37. Let D be an experimental domain generated by a set of refinable aligned
strict references. Then all elements of D are part of a pair (sb,¬sa) such that sb ∈ Db,
sa ∈ Da and ¬sa is the immediate successor of sb in D or sb ≡ ¬sa. Moreover if s ∈ D has
an immediate successor, then s ∈ Db.

Proof. Let D be an experimental domain generated by a set of refinable aligned strict
references. Let sb ∈ Db. Let A = {a ∈ Da ∣ a ∨ sb ≢ ⊺}. Let sa = ⋁

a∈A
a. First we show that

sb ≼ ¬sa. We have sb ∧ ¬sa ≡ sb ∧ ¬ ⋁
a∈A

a ≡ sb ∧ ⋀
a∈A

¬a ≡ ⋀
a∈A

sb ∧ ¬a. For all a ∈ A we have

a ∨ sb ≢ ⊺, ¬a ⋠ sb which means sb ≼ ¬a because of the total order of D. This means that
sb ∧ ¬a ≡ sb for all a ∈ A, therefore sb ∧ ¬sa ≡ sb and sb ≼ ¬sa.

Next we show that no statement s ∈ D is such that sb ≺ s ≺ ¬sa. Let a ∈ Da such that
sb ≺ ¬a. By construction a ∈ A and therefore ¬sa ≼ ¬a. Therefore we can’t have sb ≺ a ≺ ¬sa.
We also can’t have b ∈ Db such that sb ≺ b ≺ ¬sa: by 3.36 we’d find a ∈ Da such that
sb ≺ a ≼ b ≺ ¬sa which was ruled out. So there are two cases. Either sb ≢ ¬sa then sb ≺ ¬sa:
¬sa is the immediate successor of b. Or sb ≡ ¬sa.

The same reasoning can be applied starting from sa ∈ Da to find a sb ∈ Db such that sb is
the immediate predecessor of ¬sa or an equivalent statement. This shows that all elements
of D are paired.

To show that if a statement in D has a successor then it must be a before statement,
let s1, s2 ∈ D such that s2 is the immediate successor of s1. By 3.36, in all cases where
s1 ∉ Db and s2 ∉ Da we can always find another statement between the two. Then we must
have that s1 ∈ Db and s2 ∈ Da.

Theorem 3.38 (Reference ordering theorem). An experimental domain is naturally or-
dered if and only if it can be generated by a set of refinable aligned strict references.

Proof. Suppose DX is an experimental domain generated by a set of refinable aligned
strict references. Then by 3.34 and 3.37 the domain satisfies the requirement of theorem
3.16 and therefore is naturally ordered.

Now suppose DX is naturally ordered. Define the set Bb, Ba and D as in 3.12. Let
R = {(b,¬b ∧ ¬a, a) ∣b ∈ Bb, a ∈ Ba,b ≺ ¬a} be the set of all references constructed from
the basis. First let us verify they are references. The before and after statements are
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verifiable since they are part of the basis. The on statement ¬b∧¬a is not impossible since
b ≺ ¬a means b � a and b ≢ ¬a. The on statement is broader than ¬b ∧ ¬a as they are
equivalent and it is broader than b ∧ a as that is impossible since b ≺ ¬a. Therefore R is a
set of references. Since the before and after statements of R coincide with the basis of the
domain, DX is generated by R.

Now we show that R consists of aligned strict references. We already saw that b � a
and we also have ¬b ∧ ¬a is incompatible with both b and a. The references are strict.
To show they are aligned, take two references. The before and not after statements are
linearly ordered by 3.14 which means the references are aligned.

To show R is refinable, note that each reference can be expressed as (“x < x1”,“x1 ≤
x ≤ x2”,“x > x2”) where x1, x2 ∈ X and “x1 ≤ x ≤ x2” ≡ “x ≥ x1” ∧ “x ≤ x2”. That is,
every reference is identified by two possibilities x1, x2 such that x1 ≤ x2. Therefore take
two references r1, r2 ∈ R and let (x1, x2) and (x3, x4) be the respective pair of possibilities
we can use to express the references as we have shown. Suppose r1 < r2 but they are not
consecutive. Then “x ≤ x2” ≺ “x < x3”. That is, we can find x5 ∈ X such that x2 < x5 < x3

which means “x ≤ x2” ≼ “x < x5” and “x ≤ x5” ≼ “x < x3”. Therefore the reference r3 ∈ R
identified by (x5, x5) is between the two references. On the other hand, assume the second
reference is finer than the first. Then x1 ≤ x3 and x4 ≤ x2 with either x1 ≠ x3 or x4 ≠ x2.
Consider the references r3, r4 ∈ R identified by (x1, x1) and (x2, x2). Either r3 < r2 or
r2 < r4. Also note that the before statements of r1 and r3 are the same and the after
statements of r1 and r4 are the same. Therefore we satisfy all the requirements and the
set R is refinable by definition.

To recap, experimentally we construct ordering by placing references and being able to
tell whether the object measured is before or after. We can define a linear order on the
possibilities, and therefore a quantity, only when the set of references meets special conditions.
The references must be strict, meaning that before, on and after are mutually exclusive.
They must be aligned, meaning that the before and not-after statement must be ordered by
narrowness. They must be refinable, meaning when they overlap we can always find finer
references with well defined before/after relationships. If all these conditions apply, we have
a linear order. If any of these conditions fail, a linear order cannot be defined.

The possibilities, then, correspond to the finest references we can construct within the
domain. That is, given a value q0, we have the possibility “the value of the property is q0”
and we have the reference (“the value of the property is less than q0”, “the value of the property
is q0”, “the value of the property is more than q0”).

3.4 Discrete quantities

Now that we have seen the general conditions to have a naturally ordered experimental do-
main, we study common types of quantities and under what conditions they arise. We start
with discrete ones: the number of chromosomes for a species, the number of inhabitants of a
country or the atomic number for an element are all discrete quantities. These are quantities
that are fully characterized by integers (positive or negative).

We will see that discrete quantities have a simple characterization: between two references
there can only be a finite number of other references.

The first thing we want to do is characterize the ordering of the integers. That is, we want
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to find necessary and sufficient conditions for an ordered set of elements to be isomorphic to
a subset of integers. First we note that between any two integers there are always finitely
many elements. Let’s call sparse an ordered set that has that property: that between two
elements there are only finitely many. This is enough to say that the order is isomorphic to
the integers.

In fact, if an ordered set is sparse we can always go from any element to another in finitely
many steps. Therefore we can pick one element, call it zero, go forward one element at a time
and assign a positive integer to all the following elements or go backward one element at a
time and assign a negative integer to all the preceding elements.

Definition 3.39. A chain is a linearly ordered subset of an ordered set. A chain between
two elements is a chain where the two elements are the greatest and smallest elements.

Definition 3.40. An ordered set is sparse if every chain between any two elements is
finite.

Corollary 3.41. Every element in a sparse linearly ordered set that has a predecessor (or
successor) has an immediate predecessor (or successor).

Proof. Let Q be a sparse ordered set. Suppose q1 ∈ Q has a predecessor (or successor)
q0. Then we have a finite chain between the two, and the immediate predecessor (or
successor) of q1 is the second greatest (or smallest) element.

Remark. The converse of the corollary, that a linearly ordered set in which every element
that has a predecessor (or successor) has an immediate predeccessor (or successor) is sparse,
is not true. Consider the integers with the following ordering {0,1,2,3, ...,−3,−2,−1}. All
elements have an immediate predecessor/successor or no predecessor/successor, yet 3 and
−3 have infinitely many elements in between.

Proposition 3.42. A linear order is sparse if and only if it is isomorphic to a contiguous
subset of the integers.

Proof. Let Q be a sparse linearly ordered set. Pick an element q0 ∈ Q. Let q ∶ Q → Z
such that it returns 0 for q0, 1 for its immediate successor (if it exists), −1 for its immediate
predecessor (if it exists), 2 for the immediate successor of the immediate successor (if it
exists) and so on. Since the order is sparse, all elements will eventually be reached through
a chain of immediate successors/predecessors and will be assigned a value. The function is
injective and order preserving, so it is an isomorphism over q(Q), which, by construction,
is a contiguous subset of the integers

Conversely, let Q be an ordered set isomorphic to a contiguous subset of the integers
and let q ∶ Q → Z be the isomorphism. The number of elements between two elements of
the set will be equal to the number of elements between the two corresponding integers,
which is always finite.

We can now define a discrete quantity as one for which the ordering is sparse. While this
may typically correspond to a set of contiguous integers, it is not necessary. For example,
a set of names ordered alphabetically, the set of orbitals for a hydrogen atom, the possible
energies for a quantum harmonic oscillator, these are all discrete quantities even if the label
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we use is not an integer.

The natural question now is: under what conditions are the possibilities of a domain
ordered like the integers? The answer is straightforward: when the references within the
domain have a sparse order. That is, between two references we can only put finitely many
ordered references.

Definition 3.43. A discrete quantity for an experimental domain DX is a quantity
(Q,≤, q) for which the ordering is sparse.

Theorem 3.44 (Discrete ordering theorem). Let DX be an experimental domain. Then
the following are equivalent:

1. the domain has a natural sparse order
2. the domain is fully characterized by a discrete quantity
3. the domain is generated by a set of refinable aligned strict references with a sparse

order

Proof. For (1) to (2), let DX be an experimental domain with a natural sparse order
and let X be its possibilities. Pick an ordered set (Q,≤) that is order isomorphic to the
possibilities and let q ∶ X → Q be an order isomorphism. By 3.9 DX is fully characterized
by (Q,≤, q). Since the order on X is sparse, X will be order isomorphic to a contiguous
set of integers and so will Q. Therefore Q has a sparse order as well and is therefore a
discrete quantity.

For (2) to (3), let DX be an experimental domain fully characterized by Q. Then by
3.9 and by 3.38 it is generated by a set of refinable aligned strict references. Let r1 and
r2 be two references aligned with the domain such that r1 < r2. Then the after statement
of r1 will be of the form “x > q−1(q1)”, the before statement of r2 will be of the form
“x < q−1(q2)” for some q1, q2 ∈ Q such that q1 < q2. Let r ∶ Q → DX × D̄X × DX be the
function such that r(qi) = (“x < q−1(qi)”,“x ≥ q−1(qi)” ∧ “x ≤ q−1(qi)”,“x > q−1(qi)”). Let
C = {r1} ∪ {r(qi) ∣ qi ∈ Q, q1 < qi < q2} ∪ {r2}. This is the longest chain between r1 and r2

and it is finite because Q has a sparse ordering. The set of references that generate the
domain, then, must have a sparse ordering.

For (3) to (1), let DX be an experimental domain generated by a set of refinable
aligned strict references with a sparse order. By 3.38 DX has a natural order. Let r ∶X →
DX × D̄X × DX be the function such that r(xi) = (“x < xi”,“x ≥ xi” ∧ “x ≤ xi”,“x > xi”).
Let R = {r(xi) ∣xi ∈ X}. Then R is order isomorphic to X. As the order on R is sparse
then the order on X is sparse as well.

Now, consider the examples above of discrete quantities: in each case we can experimen-
tally test whether we have a particular value or not. For example, we are always able to tell
whether there are exactly three apples on the table or not.5 This is not a coincidence: there
is a direct link between the ability to have consecutive references and decidability.

As we saw before in 3.31, two consecutive references are such that the before statement
of one is equal to the negation of the after statement of the other. But since before and after

5Recall that this is not the case with continuous quantities. Because of finite precision, we are able to
exclude that a given particle has exactly zero mass but it is not possible to conclusively show that it has zero
mass.
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statements are both verifiable, it means their negation is also verifiable: they are decidable.
And since before and after statements generate the domain, all statements in the domain are
decidable. It turns out that this will work in reverse as well: whenever we have a domain
consisting of only decidable statements, we can always create a discrete quantity that fully
characterizes the experimental domain.

Proposition 3.45. The order topology for the integers is discrete.
Proof. Each singleton {z} ⊆ Z is in the order topology since {z} = (z−1,∞)∩(−∞, z+1).

Each arbitrary set of integers is the union of singletons and is therefore in the order topology
as well. The order topology on the integers is discrete.

Proposition 3.46. An experimental domain is decidable if and only if it is fully charac-
terized by a discrete quantity.

Proof. Let DX be a decidable domain. Then by 1.74 the set of possibilities X is
countable and by 1.76 the natural topology is discrete. Since X is countable, there exists
a bijective map q ∶ X → Z. The map is a homeomorphism since the topology on both X
and Z is discrete. The domain DX is fully identified by (Z,≤, q).

Let DX be fully characterized by (Z,≤, q). This means that q ∶ X → Z is a homeomor-
phism. The natural topology for X is therefore discrete and the domain is decidable by
1.76.

Note that, since any discrete order leads to a decidable domain and a discrete topology,
any reordering of the possibilities will give the same exact domain. This means that, while
we can always assign a natural order, the order itself may not necessarily be meaningful. For
example, we can always take a finite group of objects and arbitrarily assign each a unique
integer to identify it. In the discrete case the domain itself is not enough to pick a unique
order, though the set of aligned references that are used to generate the domain is.

Also note that for the link between decidability and discrete quantities to apply, it is
crucial the quantity is measurable: that we can actually experimentally ascertain its values.
Consider the domain with the possibilities “there is no extra-terrestrial life” and “there is
extra-terrestrial life”. We can arbitrarily label 0 the former and 1 the latter. But since we
cannot verify the first statement, we cannot really “measure” 0. In that case, the domain is
fully identified by the discrete quantity, but not fully characterized.

3.5 Arbitrary precision and continuous quantities

The second type of quantities we want to consider are continuous ones: the average wingspan
for a species, the population density of a country or the mass of a proton are all continuous
quantities. These are quantities that are fully characterized by real numbers.

We will see that also continuous quantities have a simple characterization: between two
references there can always be an infinite number of other references.

Similar to what we did for the integers, we want to characterize the ordering of the real
numbers. This will be a little bit more involved as we will need a few more requirements. First
of all we note that between two real numbers there are always infinitely many real numbers.
Let’s call dense an ordered set that has that property. This is not enough to identify the real
numbers, though; the rational numbers are also dense.
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One reason real numbers are used over the rationals is that they contain all the limits. This
property can be restated in terms of ordering in the following way. Suppose (Q,≤) is a linearly
ordered set. Take a set A ⊂ Q that is bounded. That is, the set B = {q ∈ Q ∣a ≤ q ∀a ∈ A} of
elements that are greater than all the elements of A is not empty. Then we say that (Q,≤) is
complete if B has a smallest element. One can show that the rationals are not complete. Say
A contains all rationals less than π, then there is no smallest rational value that is greater
than all elements of A.

Dense and complete linear orders exclude both the integers and the rationals, but they
don’t pick out only the reals. To do that we take advantage of two results of order theory.
The first is that all dense countable ordered sets are isomorphic to the rational numbers.
The second is that from any linear order one can construct its completion (i.e. you add all
the missing limits), which is unique up to an order isomorphism. Suppose that (Q,≤) has a
countable subset Q ⊂ Q that is dense in Q. That is, for every two distinct elements q1, q2 ∈ Q
where q1 < q2 we can find an element q ∈ Q such that q1 < q < q2. If Q is dense, Q will also be
and therefore will be order isomorphic to the rationals, since it is countable. If Q is complete,
then it will be the completion of its dense set Q, and therefore it will be order isomorphic to
the reals.

Definition 3.47. An ordered set is said to be dense if between any two elements there
exists an infinite chain.

Corollary 3.48. An ordered set is dense if and only if between two elements we can always
find another one.

Proof. We give a definition of dense that is different from the typical definition because
we want it to be formally similar to our definition of sparse. Here we show that our
definition of dense is equivalent to the standard one.

Let (Q,≤) be a dense ordered set. Let q1, q2 ∈ Q then we can find an infinite chain
between them. Take an element q within that chain that is not an endpoint. We have
q1 < q < q2.

Now let (Q,≤) be a linearly ordered set such that between two elements we can always
find another one. Let qa, qb ∈ Q and let C ⊂ Q contain qa, qb, an element q1 such that
qa < q1 < qb, an element q2 such that q1 < q2 < qb, an element q3 such that q2 < q3 < qb and
so on. Then C is a chain between qa and qb that contains infinitely many elements.

Definition 3.49. A subset Q ⊂ Q of a linearly ordered set is dense in Q if given q1, q2 ∈ Q
such that q1 < q2 we can find q ∈ Q such that q1 ≤ q ≤ q2.

Definition 3.50. A linearly ordered set Q is complete if every non-empty bounded subset
of Q has a supremum. This is, given A ⊂ Q such that B = {q ∈ Q ∣a ≤ q ∀a ∈ A} is not
empty, then B has a smallest element.

Theorem 3.51. A linearly ordered set is dense, complete and has a countable dense subset
if and only if it is order isomorphic to a contiguous subset of real numbers.

Remark. Proving this theorem would go beyond the scope of this book so we will take
it as a given. The general idea is as follows. Show that the completion of an ordered set is
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unique up to an isomorphism. Show that the given set is the completion of the countable
dense subset. Show that the countable dense subset is order isomorphic to a subset of the
rational numbers. Show that the real numbers are the completion of the rational numbers.
Then the set is isomorphic to a subset of the real numbers.

We can now define a continuous quantity as one for which the values are a contiguous
subset of the real numbers. While in principle we could define it on a generic set that is order
isomorphic to the real numbers, we do not have any other example of such a set.

The natural question now is: under what conditions are the possibilities of a domain
ordered like the real numbers? The answer is straightforward: when the references within
the domain have a dense order. That is, between two references we can put infinitely many
ordered references. Intuitively, between two marks of a ruler we can keep putting finer and
finer marks.

Note that the dense order on the references is enough to get a dense complete order on the
possibilities that has a countable dense subset. The completion comes without extra conditions
because experimental domains are closed under countable disjunctions. New references, in
fact, can be constructed as limits of others and, since they will be just other references they
will have the same properties. The countable dense subset simply corresponds to the countable
basis of the domain.

Definition 3.52. A continuous quantity for an experimental domain DX is a quantity
(U,≤, q) where U ⊆ R is a contiguous subset of the real numbers.

Theorem 3.53 (Continuous ordering theorem). Let DX be an experimental domain. Then
the following are equivalent:

1. the domain has a natural dense complete order that has a countable dense subset
2. the domain is fully characterized by a continuous quantity
3. the domain is generated by a set of refinable aligned strict references with a dense

order

Proof. For (1) to (2). Let DX be a domain with a natural dense complete order with
a countable dense subset. Then by 3.51 it is order isomorphic to a contiguous subset of
the real numbers. Then by 3.9 the domain is fully characterized by a continuous quantity
(U,≤, q) where U ⊆ R.

For (2) to (3). Let DX be a domain fully characterized by a continuous quantity. Then
by 3.9 and by 3.38 it is generated by a set of refinable aligned strict references. Let r1 and
r2 be two references aligned with the domain such that r1 < r2. Then the after statement
of r1 will be of the form “x > q−1(q1)”, the before statement of r2 will be of the form
“x < q−1(q2)” for some q1, q2 ∈ Q such that q1 < q2. Let r ∶ Q → DX × D̄X × DX be the
function such that r(qi) = (“x < q−1(qi)”,“x ≥ q−1(qi)” ∧ “x ≤ q−1(qi)”,“x > q−1(qi)”). Let
C = {r1} ∪ {r(qi) ∣ qi ∈ Q, q1 < qi < q2} ∪ {r2}. As Q is dense, this chain will be infinite.
Therefore the domain can be generated by a set of refinable aligned strict references with
a dense order.

For (3) to (1). Let DX be an experimental domain generated by a set of refinable
aligned strict references with a dense order. By 3.38 DX has a natural order. Let r ∶ X →



3.5. ARBITRARY PRECISION AND CONTINUOUS QUANTITIES 91

DX × D̄X × DX be the function such that r(xi) = (“x < xi”,“x ≥ xi” ∧ “x ≤ xi”,“x > xi”).
Let R = {r(xi) ∣xi ∈ X}. Then R is order isomorphic to X. As the order on R is dense
then the order on X is dense as well. Let Db be the before domain. By 3.14 it is order
isomorphic to X. Let Bb ⊆ Db be a countable basis for the domain. As it is a subset
of a linearly ordered set, it will also be a linearly ordered set. As the basis is ordered
by narrowness, finite conjunctions and disjunctions of basis elements will return a basis
element. Therefore every element in Db is equivalent to the disjunction of a countable set
of elements of Bb. Let b1,b2 ∈ Db be two statements such that b1 ≺ b2. Let B1,B2 ⊂ Bb be
the set of basis elements such that b1 = ⋁

s∈B1

s and b2 = ⋁
s∈B2

s. Since b1 ≢ b2, there must be

a b ∈ B2 such that b ∉ B1. Because of the ordering of the basis, we have b1 ≺ b ≼ b2. The
basis Bb is dense in Db. Moreover, Db is complete. Let B ⊆ Db then ⋁

s∈B
s is in Db and, since

it is the narrowest statement that is broader than any statement in B, it is the supremum
of B. As Db is complete and has a countable dense subset so does X and therefore it has
a continuous order.

Another way to think about the verifiable statements of a domain characterized by a
continuous quantity is in terms of finite but arbitrarily small precision. That is, when we
measure a continuous quantity we can verify statements of the form “the value is 1 ± 0.5”.
The verifiable statement is in terms of a range and the extremes are rational numbers. It is
instructive to know, then, that the topology for the real numbers can be generated by those
types of statements. In terms of references this means that all our verifiable statements could
be expressed as verifying that the value is between two references from a countable set of
possible references. This, again, maps well to what one can and does do in scientific practice.

Mathematically, we call the standard topology on the real numbers the one generated by
the open intervals between rational numbers, and we can show that this is exactly the order
topology. Moreover, every verifiable set is the disjoint union of open intervals.

Definition 3.54. We call standard topology on the real numbers R the one generated
by the collections of sets B = {(a, b) ⊂ R ∣ a, b ∈ Q} of all open intervals between rational
numbers Q.

Proposition 3.55. The order topology on the real numbers is the standard topology.

Proof. To show that they are equivalent, we show that the basis of one generates the
basis of the other. Let a, b ∈ Q be two rationals. The sets (−∞, b) and (a,∞) are in the
basis of the order topology. Their intersection is the set (a, b) of the standard topology.
The basis of the standard topology can be generated by the order topology.

Conversely, let a ∈ R be a real number. Let {Ui}i∈I be the collection of all sets Ui =
(ai, bi) such that ai, bi ∈ Q and a < ai. These sets are in the basis of the standard topology.
We have ⋃

i∈I
Ui = (a,∞). In the same way, let b ∈ R be a real number. Let {Vj}j∈J be the

collection of all sets Vj = (aj , bj) such that aj , bj ∈ Q and bj < b. These sets are in the basis
of the standard topology. We have ⋃

j∈J
Vj = (−∞, b). The basis of the order topology can

be generated by the standard topology.
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Proposition 3.56. Let U ∈ TR be a set in the standard topology on the reals. Then U =
∞

⋃
i=1
Vi is the countable disjunction of open intervals Vi = (ai, bi) where ai, bi ∈ R ∪ {−∞,∞}.

Proof. The set U can be expressed as the union of some collection B ⊆ B of open
rational intervals. From B construct B1 ⊆ B by picking an element of B and keep adding
any element that is not-disjoint from an element in B. If there are elements left over,
construct B2 ⊆ B with the same procedure and continue until there are no elements left.

Take V1 = ⋃
V ∈B1

V the union of all elements of B1. Since we are taking the countable

union of open rational intervals, and because of the overlap of these intervals, the result
will be an open interval over the real numbers. Repeating for all Bi will give us a collection

of disjoint open intervals {Vi}∞i=1 such that U =
∞

⋃
i=1
Vi.

In the previous section we saw how the ability to have consecutive references is linked to
decidability. In the case of continuous quantities, the inability to have consecutive references
means we cannot have decidable before or after statements, otherwise we could use them to
create consecutive references. So, while for integer quantities references have immediate suc-
cessors and predecessors and all statements are decidable, for a continuous quantity references
do not have immediate successors and predecessors and the statements are only verifiable.

We stress here that it is the immediate successors of the references that matter, not the
immediate successors of possibilities/values. Take the rationals, for example. As values, they
do not have immediate successors or predecessors: their order is dense. But we can construct
a reference with “the rational quantity is more than π” as an after statement and a reference
that has “the rational quantity is less than π” as a before statement. Since π is not a rational
number, there are no values in between: the two references are consecutive. This can never
happen with the reals, because all limit values are possible values. So, while the rationals do
not admit consecutive values, it is only the reals that never admit consecutive references.6

Proposition 3.57. A naturally ordered experimental domain DX is characterized by a
continuous quantity if and only if none of the verifiable statements are decidable except for
the certainty and the impossibility.

Proof. Let DX be a naturally ordered domain for which none of the verifiable statements
are decidable except for the certainty and the impossibility. Then it is generated by a
refinable set of aligned strict references R. Let r1 = (b1,¬b1 ∧ ¬a1, a1) be a reference
aligned with the domain that admits a successor. Then a1 is a verifiable statement that is
not impossible and therefore it is not decidable given the properties of DX . This means
there can’t be an immediate successor for r1: by 3.31 the before statement of the immediate
successor would have to be equivalent to ¬a1 which is not verifiable. Therefore if r3 is a
reference such that r1 < r3, we can find yet another reference r2 aligned with the domain
such that r1 < r2 < r3. The order on R is dense and by 3.53 the domain is fully characterized
by a continuous quantity.

6Mathematically, this construction corresponds to the Cauchy limits or the Dedekind cuts that one uses
to construct the reals. The idea is that experimental domains already have them built into their structure in
a way that corresponds better to physical concepts.
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Conversely, let DX be a domain characterized by a continuous quantity (U,≤, q). Take
a contingent verifiable statement s ∈ DX and a possibility x0 ∈X such that x0 � s. Consider
the value q0 ∈ R such that q(x0) = q0. Because s is verifiable, it will correspond to a set V
of the topology of the quantity, which by 3.56 is the union of open intervals. Since x0 � s
then q0 ∈ V . Find the interval (q1, q2) that contains q0. We can find q4, q5 ∈ (q1, q2) such
that q4 < q0 < q5. We’ll also have q̂ ∈ V for all q4 < q̂ < q5. That is, for any value that is
compatible with s we can find a contiguous finite interval surrounding the value with all
elements compatible with s.

Consider now the statement s. Because it is contingent, it will not be compatible with
at least one possibility and therefore one value in U . The set V will contain some interval
with at least one finite endpoint q0. Since it is the endpoint of an open interval, we cannot
find q1 < q0 < q2 such that q̂ ∉ V for all q1 < q̂ < q2. That is, there is at least one value
incompatible with s that does not admit a finite interval surrounding it with all elements
incompatible with s.

Now consider ¬s. There will be at least one value compatible with ¬s that does not
admit a finite interval surrounding it that is all compatible with ¬s. But since this can-
not happen for a verifiable statement, then ¬s is not a verifiable statement and s is not
decidable.

The integers and the reals, then, are the only two possible orders defined experimentally
that are, in a sense, regular. That is, the order relationships look the same no matter where
you are in the order. You have an immediate successor (or not) regardless of what reference
you have. You can only put finitely many references (or not) between any two references.
For any other ordering, instead, some references will have an immediate successor and some
won’t. In this sense integers and reals are very special and that is why they are fundamental
in physics.

3.6 When ordering breaks down

As we have identified the necessary and sufficient conditions to define an order from exper-
imental verification, we can reflect on whether these are achievable in practice or they are
idealizations. We need to be able to create references that are strict (before/on/after mu-
tutally exclusive), aligned (references can be fully before or after each other) and refinable
(overlapping references can be divided into finer sequential ones). Are these always reasonable
expectations?

In the case of discrete quantities, they indubitably are. The domain is decidable so the
possibilities themselves are verifiable statements. We can actually confirm that “there are 3
ducks on the table”. Therefore it is clear that this can be and is achieved.

In the case of continuous quantities, instead, things are a lot more problematic. In some
cases, you start with what you think is a continuous quantity but then you realize that it was
a discrete one. For example, an amount of water seems continuous but if you keep refining
your references you see that it consists of discrete molecules. That is, you can’t really go on
refining references indefinitely. But that’s not the only way the continuous order can break
down.

Suppose you want to refine the marks on a ruler over and over, getting more and more
precise position measurements. You start with 1 mm thick lines, you reduce them to 0.1 mm
and make more of them and so on. At some point you’ll reach single molecules or single atoms,
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but those have spatial extension as well. We can reach fundamental particles, but those too
have an extent (i.e. their wavefunctions can overlap). We can imagine using more wavelike
features, but the spatial resolution will be linked to higher and higher energies through higher
wave-numbers. So it is not clear we continue having ever finer references.

On a similar note, if a reference is, in the end, realized through a set of particles, it stands
to reason that if we reduce the number of particles the reference will become finer. If single
particles are the finest reference, we don’t have that many choices. But how are we going to
be able to tell our references apart, since, for example, all electrons are indistinguishable from
each other? How can we place them ever increasingly close to each other so that they don’t
scatter and switch place?

Moreover, it is not clear how our references can be strict. That is, that the object we
measure is always either before, on or after the reference. If the object we are measuring is
of smaller extent than our references then we can reasonably pretend they are strict. But if
both the references and what we are measuring are single particles, it would seem we have a
problem.

It would appear, then, that the conditions for a continuous quantity can never really be
ultimately met. And if those conditions can’t be met, it’s not that we don’t have the real
numbers: we don’t have ordering at all. Strictness, alignment and refinability are requirements
for order in general. And if space and time can’t be truly given an ordering, other derived
quantities, like velocity, acceleration, mass, energy and so on would inherit the problems.

In both cases the real numbers are just an approximation we can make by pretending
we can get finer and finer strict and aligned references. This may be contrary to the way
many people see the relationship between mathematical and physical objects. Some may feel
that the geometric description, with its infinite precision, is the perfect one while the physical
one, with the inherent measurement bounds, is the less precise one. Actually, it is quite the
opposite: the bounds of a measurement better qualify our description and knowledge while
the geometrical description provides a simplified, idealized and therefore less precise account.
In other words, 3.14 ± 0.005 is an exact physical description while π is the approximation.

We again stress the fact that the approximation can break down in different ways. It
may break down because we reach a finest element or it may break down because we do
not have finer, strict and aligned references anymore, which is what we expect to happen for
space and time. We’d have a structure where coarse references, at some point, are to a good
approximation refinable/strict/aligned and therefore approximately ordered while the really
fine ones are not. Note that a lot of physical ideas and mathematical tools rest on the idea
that there is a well defined ordering. Causality and deterministic motion require that time is
linearly ordered. Differentiation and integration also require the reals to be linearly ordered.
All these tools, then, need to be fundamentally reshaped. The general theory, then, is telling
us that there is a lot of work that needs to be redone if we are to construct a physical theory
that works in those regimes.

3.7 Summary

In this chapter we have seen how our general mathematical theory of experimental science
handles properties and quantities. These are what we typically use in practice to distinguish
between the possible cases and are what we measure experimentally.
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Mathematically, each possibility is mapped to an element of a topological space whose
verifiable sets correspond to verifiable statements. This construction maps to what happens
in manifolds, where the points of the space are in one-to-one correspondence with a suitable
Euclidean space. Our construction is more general and works for non-numeric properties as
well.

We have seen that quantities are particular types of properties characterized by a linear
order. In this case the topology is the order topology given by the linear order, which repre-
sents the ability to experimentally compare two different values and tell which one is greater.
The property ordering theorem and the domain ordering theorem give us the necessary and
sufficient conditions under which an experimental domain is fully characterized by a quantity.

To construct a system of measurement for a quantity, we saw that all we need is to
define a set of references: objects that partition the cases into a before and after. In general,
though, references can overlap as they will have some physical extent and may not be aligned.
The reference ordering theorem tells us that an ordering on the possibilities emerges only if
the references are refinable (we can always break apart overlapping references), aligned (the
before and not-after statements are ordered by narrowness) and strict (the value is always
either before, on or after the reference).

We defined discrete quantities as the ones that can be associated with integers and contin-
uous quantities as the ones that can be associated with real numbers. Physically, the defining
characteristic of the first is that between two references we can only put finitely many ref-
erences while the defining characteristic of the second is that between two references we can
always put infinitely many. Mathematically, the ordering in the second case is automatically
complete because experimental domains will already contain all the limits in the form of
countable disjunctions.

It is important to note that the requirements for continuous quantities cannot really be
physically realized. Continuous quantities, then, should really be thought of as an idealization:
the limit of an infinite process of subdivision. To go past the idealization, either we lose the
idea of having infinitely many references between two, in which case we revert to discrete
quantities, or we lose the ordering altogether.





Part II

Blueprints for the work ahead
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Chapter 4

General theory

This chapter presents the areas that still need to be covered to conclude the general math-
ematical theory of experimental science and a summary of the preliminary work done on
them.

4.1 Experimental verifiability

This first part is already well developed and has been presented in chapters one to three.
Possible improvements are discussion in section 4.4.

4.2 Informational granularity

The general goal of this part is to recover elements of measure theory, differential geometry,
probability theory and information theory. The central theme is the ability to compare and
then quantify the granularity of the description provided by different statements. The idea is
to have a single unified structure which can be, in some cases, reduced to the more familiar
mathematical structures.

Statement fineness

Conceptually, we want to be able to compare two statements to see which one provides a
more refined description, which one provides more information. For this, we need to establish
a new axiom.

Note that a theoretical domain D̄ comes with a partial order ≼ that indicates whether one
statement gives a narrower, more specific, description than the other. For example:

� “The position of the object is between 0 and 1 meters” ≼ “The position of the object is
between 0 and 1 kilometers”

� “The fair die landed on 1” ≼ “The fair die landed on 1 or 2”
� “The first bit is 0 and the second bit is 1” ≼ “The first bit is 0”

In these cases, the first statements are “contained” in the second ones, which are more general.
We need to define an additional preorder t∶ D̄ × D̄ → B that compares two statements and

tells us if the first provides a description with finer granularity than the second. Saying s1 t s2
means that the description provided by s1 is finer, gives more information, is more precise,
than the description provided by s2. For example:
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� “The position of the object is between 0 and 1 meters” t “The position of the object is
between 2 and 3 kilometers”

� “The fair die landed on 1” t “The fair die landed on 3 or 4”
� “The first bit is 0 and the second bit is 1” t “The third bit is 0”

In these cases, the first statement may not be contained or overlap with the second. The
existence of this operator and its property would be an additional axiom. Fineness is a
preorder, rather than an order, because it does not satisfy antisymmetry: if s1 t s2 and s2 t s1
then it is not necessarily true that s1 ≡ s2. In that case, we will say that the two statements
are equigranular, noted s1 ≐ s2.

Note how statements about geometry, probability and information all satisfy the same
concept. In fact, each of these structures will generate a preorder on the statements. The
general question is what are the necessary and sufficient conditions on the preorder to be able
to recover those structures.

Measure theory

Conceptually, a measure allows one to assign a size to a set. For us, a theoretical set is really
a statement, so we want to assign sizes to statements that represent the coarseness of the
description they provide.

The construction should, roughly, proceed as follows. Let D̄X be a theoretical domain.
We select a unit statement u ∈ D̄X . We define, in some way, the set D̄u ⊆ D̄X which contains
all statements that are comparable to u. We then try and construct a measure µu ∶ D̄u → R
such that µu(u) = 1. By a measure, we mean that µu is additive over incompatible statements
(i.e. disjoint sets of possibilities). That is, if s1 � s2, we have µu(s1 ∨ s2) = µu(s1)+µu(s2). We
want the measure to respect the fineness preorder, to be monotonic. That is, if s1 t s2 then
µu(s1) ≤ µu(s2).

Note that we have essentially one measure for each equivalence class defined by fineness.
This is intended. One reason a single measure is not sufficient for our work is because we
need to compare statements of “different infinities”. If we have a single measure, we can only
compare objects with a finite measure. All objects with zero measure (or infinite measure)
are indistinguishable. For example, we want to say:

� s1 = “The horizontal position of the object is exactly 0 meters”
� s2 = “The horizontal position of the object is exactly 1 or 2 meters”
� s3 = “The horizontal position of the object is between 0.5 and 1.5 meters”
� s4 = “The horizontal position of the object is between 1.5 and 3.5 meters”
� s1 t s2 t s3 t s4
� s1 í s2 í s3 í s4

Fineness may also capture the concept of physical dimension. In fact, two descriptions in
the same units are “finitely comparable” in the sense that one gives a finer description than
the other by a finite factor. Descriptions of different units are either “infinitely comparable”
(e.g. areas are always bigger than lengths) or not comparable (e.g. position and momentum).
Consider a two dimensional phase space of a classical system. Points should be comparable
and in fact should be equigranular ≐ so that we can compare sets of finitely many points.
Areas are also comparable to each other, and are comparable to points (i.e. they are infinitely
bigger). However, vertical lines (i.e. ranges in momentum alone) are not comparable to
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horizontal lines (i.e. ranges in position alone). Symplectic geometry, in fact, gives a size to
areas and not to lines. Mathematically, this should be clarified when one is trying to define
the domain of the measure D̄u.

Probability

Conceptually, probability is recovered as a measure restricted to a particular subset. The idea
is that you take two statements, such as “the die landed on 2” given that “the die has 6 sides
and it is fair”, and you ask what fraction of the possibilities compatible with the second is
also compatible with the first. This defines the conditional probability.

Let s1, s2 ∈ D̄ be two theoretical statements. Then the probability of s2 given s1 is

P (s2∣s1) = µs1(s1 ∧ s2) =
µu(s1 ∧ s2)
µu(s1)

(4.1)

which quantifies the fraction of possibilities compatible with s1 that are also compatible with
s2.

If we take the certainty ⊺ as a unit, we have a probability measure for the whole space.
However, since we can take different statements as a unit, we will be able to distinguish
between the following cases:

� P (“n is odd” ∣“n is picked fairly from all integers”) = 1/2
� P (“n is between 0 and 9” ∣“n is picked fairly from all integers”) = 0
� P (“n is 3” ∣“n is picked fairly from all integers”) = 0
� P (“n is 3” ∣“n is between 0 and 9”∧“n is picked fairly from all integers”) = 1/10

Differential geometry/geometric measure theory

Conceptually, we want to assign quantities to regions instead of points. If we assume these
quantities are additive, the idea is that we can decompose them into the sum of infinitesimal
contributions at each point. Therefore the differential objects exist as the limit of infinitesimal
decomposition. This, again, reflects the overall spirit of the project that compels us to start
from physically well defined entities (in this case the quantities associated with finite regions)
and derive the theoretical ones (in this case the infinitesimal contributions that are integrated).

Let D̄X be a theoretical domain and U ∈ ΣX a theoretical set. This represents the region
associated to our measurement. Let D̄Y be a theoretical domain and R ∈ ΣY a theoretical
set. This represents the possible values found. Our starting point consists of statements like:

� “the amount of mass inside volume U is within range R”
� “the force applied to surface U is within range R”
� “the energy used to move the object along the line U is within range R”

These are finite precision statements of a quantity associated to a region of finite size.

The first step is to group statements within the same region U into subdomains D̄U→Y .
We can then show how the possibilities for each D̄U→Y reduce to statements like:

� “the amount of mass inside volume U is precisely y”
� “the force applied to surface U is precisely y”
� “the energy used to move the object along the line U is precisely y”
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These are infinite precision statements of a quantity associated to a region of finite size.
We define S ⊆ ΣX as the type of region (i.e. volumes vs surfaces vs lines) upon which the
functional is defined and therefore we have a functional f ∶ S → Y which tells us the exact
value of the quantity in each region.

Then we study the case where f is a real linear k-functional, meaning:

� the possibilities X are identified by a set of real values; that is, X with the natural
topology is a manifold

� the domain is all k-dimensional surfaces Sk; that is, the submanifolds of dimension k
� the co-domain is the reals; so we have f ∶ Sk → R
� the functional is additive over disjoint sets; that is, F (U1 ∪ U2) = F (U1) + F (U2) if
U1 ∩U2 = ∅

� the functional commutes with the limit; that is, lim
i→∞

F (Ui) = F ( lim
i→∞

Ui)

Under these conditions (and possibly others) one can express the functional as a sum of
infinitesimal contributions. That is, f(U) = ∫U ω(dU), where ω represents a suitable k-form.

Note that there is not a unique way to perform this decomposition. For example, if f(U)
is the total mass in the volume, ω(dU) is the density in the infinitesimal volume. If we change
the density at a single point, the integral does not change and only the integral is physical.
These are the types of issues that still need to be solved.

Stokes’ theorem and exterior derivatives. One interesting application of this view-
point is that we can understand things like Stokes’ theorem, exterior derivative and the
difference between closed and exact forms directly on the finite functionals.

Let ∂ ∶ Sk → Sk−1 be the boundary operator that, given a surface σk, returns the boundary
∂σk which is of dimension k − 1. We have ∂∂σ = ∅ for any surface of any dimensionality.

Let Fk be the space of linear k-functionals. We can define the boundary functional operator
∂ ∶ Fk → Fk+1 such that ∂f(σ) = f(∂σ). That is, given a functional that acts on k-surfaces we
can always construct one that acts on k+1-surfaces by taking the boundary of the k+1-surface
and giving it to the first functional. Note that ∂∂f(σ) = ∂f(∂σ) = f(∂∂σ) = f(∅) = 0, so the
boundary functional of the boundary functional is the null functional, the one that returns
zero for every k-surface. What we should be able to prove is that if ω is the k-form associated
with f , dω is the k + 1-form associated with ∂f . In other words, Stokes’ theorem essentially
becomes a definition of the boundary functional and the calculation of the expression for dω.

We say a surface is contractible if it can be reduced to a point with a continuous transfor-
mation. A functional is closed if it is zero for all closed contractible surfaces. It is exact if it
is zero for all closed surfaces. All boundary functionals are exact since ∂f(∂σ) = f(∂∂σ) = 0.
The form associated to a closed functional will be closed while the form associated to an exact
functional will be exact.

4.3 States and processes

The general goal of this part is to give general definitions of states and processes that are
always valid and are captured by a fundamental mathematical framework. Different theories
would then specialize these basic definitions for different circumstances.
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Processes

A process is an experimental domain P that contains all the possible statements of the systems
under study for all possible times. We call evolutions the possibilities E of the domain, as
they represent the complete description of all systems at all times.

We define a time parameter t ∈ T ⊆ R. We group all statements relative to a system of
interest at a particular time into a time domain Dt. We call snapshots the possibilities Xt

of each time domain. A possible trajectory is a sequence {xt}t∈T such that xt ∈ Xt for all
t ∈ T and e ≼ ⋀

t∈T
xt for some e ∈ E. That is, there is an evolution for which the system will be

described by that sequence of snapshots.

A process is deterministic if for all possible trajectories xt0 ≼ xt1 for all t0 ≤ t1. A process is
reversible if for all possible trajectories xt1 ≼ xt0 for all t0 ≤ t1. Recall that narrowness between
the possibilities of two domains means there is an experimental relationship. Therefore, if the
process is deterministic, we can write a causal relationship f ∶Xt0 →Xt1 such that x0 ≼ f(x0).

Once we derive a measure µu ∶ P̄u → R, we can define the evolution entropy as logµu. As
the measure is multiplicative for independent systems, the evolution entropy will be additive
making it an extensive property. The evolution entropy of a system at a time is defined to be
the evolution entropy logµu(xt) of the snapshot at that time. Under a deterministic process,
the evolution entropy can never decrease: logµu(xt0) ≤ logµu(xt1) since xt0 ≼ xt1 for all t0 ≤ t1
and therefore µu(xt0) ≤ µu(xt1). If the process is also reversible, then logµu(xt0) = logµu(xt1).

These definitions give a very general setting to describe a process and already find a
quantity that cannot decrease during deterministic evolution.

States

Conceptually, states represent description of the system, and only of the system, regardless
of time. Therefore the state space is not a set of statements, but a “template” for a set of
statements that can be “instantiated” at different times.

The idea is that a state space S comes equipped with a function ι ∶ S × T → P̄ such that
ι(S, t) = D̄t. That is, it maps the state space and its statements to the particular time domain
that represents the system at that particular time. Specifically, states of the system will be
mapped to snapshots of the system.

The structure of the state space will not be, in general, isomorphic to each particular
time domain. In a particular process at a particular time some states may not be accessible,
so some states will be mapped to an impossibility. Or there may be correlations with other
system, so the snapshot will provide more information (will be narrower) than the states
themselves.

The relationships defined on the state space will be equivalent to the ones in the time
domain if and only if the time domain of the system is independent from the time domain of
the other systems. In other words: the state space represents the system and its properties
when the system is independent. This also means that, to be able to define a system, we need
to have a process that renders it independent from other systems.

When the system is independent from all others, the description is coarser than in the
case of when there are correlations. Note that to a coarser description is associated a higher
process entropy. Processes that render the system independent are exactly the ones that
maximize the process entropy. We can associate a state entropy to each state, which is the
process entropy associated to that description when the system is independent.
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While it is still not clear what can be derived and what must be imposed, the overall
goal is to understand what assumptions are needed to construct state spaces. One result
should be that processes that isolate the system are implicitly needed, which forms the basis
of requiring entropy maximization. All states are therefore equilibria of those processes (i.e.
symmetries of the group of processes). Conceptually, this maps well with all branches of
physics as all state spaces come equipped with some structure which, in the end, is connected
to entropy/probability/measure.

4.4 Open questions and possible extensions

Here we note some thoughts and ideas about open problems and possible extensions to the
general theory.

Homogeneity of an experimental domain

It may be interesting to characterize some notion of homogeneity that makes all possibilities
in a domain “equally verifiable”, that no possibility is “special” compared to the others in
terms of experimental verifiability. For example:

� the “extra-terrestrial life” domain is not homogeneous because one possibility can be
verified while the other cannot

� the integers and reals are the only linearly ordered quantities where all contingent state-
ments are the same experimentally: all decidable and none decidable

� phase transitions are special, as knowing whether a system is in a mixed state is decid-
able, so a domain with phase transitions is not homogeneous

It is not clear how this notion should be implemented and how exactly it would be useful.
It may give a reason to expect a complete domain (the residual possibility is the only one
that is not compatible with any contingent verifiable statement, so the domain would not
be homogeneous) and also that all possibilities are approximately verifiable (if one is able to
prove that, in any domain, at least one possibility is approximately verifiable).

Predictive relationships

Another way to characterize relationships between domains could be in terms of predictions,
what statements of one domain can tell about the other. That is, we give a theoretical
statement on one and look for the best prediction (i.e. narrowest theoretical statement broader
than the original) for the other.

For example, if a domain is independent from another, any theoretical statement should
predict the certainty on the other. If a domain is dependent on another, any theoretical
statement should predict an equivalent statement.

A possible approach. Let DX and DY be two experimental domains and D̄X and D̄Y their
respective theoretical domains. Now we construct the function π ∶ D̄X → D̄Y such that given
sX ∈ D̄x and sY ∈ D̄Y such that sX ≼ sY we always have sX ≼ π(sX) ≼ sY . In other words, it
should map to the narrowest broader statement in D̄Y .

In principle, we can even extend π ∶ S → D̄Y to be defined on the whole context. In
that case, π can be proven to be a projection. This map should be able to characterize the
relationship between domains. For example, if π(D̄X) = {⊺,�} then the domains should be
independent. If π(D̄X) = D̄Y the domains should be dependent.
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Defining structures on experimental domains

Some mathematical structures are defined on points (i.e. vector spaces, ordering) and others
on their σ-algebras. In our context, verifiable statements are the only elements that are
actually physical, therefore it would be nice to always define the structures on the experimental
domain (i.e. the topology) and show that it induces a unique structure on the theoretical
statements and possibilities (and vice-versa).

We have already implemented this approach in a couple of areas. Theoretical domains
are constructed from experimental domains (see 1.36) and so are the possibilities (see 1.47).
Theorem 2.10 shows that causal relationship on the possibilities is equivalent to an inference
relationship on the verifiable domain. Theorem 3.16 shows that ordering of the possibilities
is equivalent to the ordering of the basis according to narrowness.

We need to understand how this can be achieved for other structures, such as measures,
metrics, groups, vector spaces, inner products, ...

Space of possible combined domains

It should be possible to better characterize the space of all possible combined domains. As
we show in 2.34 that the space of the possible experimental relationships is the space of
topologically continuous functions, there should be an analogue for the space of all possible
combined domains. For example, one should be able to show that the combined domain is
an immersion within the product topology. Is that the only constraint? How can that be
characterized? Can we create an experimental domain to distinguish them?

Limited precision

One area we could explore for new physical ideas is what happens if we assume that the
precision cannot be arbitrarily decreased. How is it different from the continuous case? Here
are some preliminary ideas.

The limited precision case cannot simply lead to a discrete topology. The standard topol-
ogy of the reals is not the limit of the integer topology since it is not discrete. Most likely, the
limited precision case will need to have uncountable possibilities so that the limit to arbitrary
precision can work well.

The main cause of confusion is that, in the continuous case, whether the precision of
two statements overlap determines whether the statements are compatible. For example,
“the position is between 0 and 1 meters” and “the position is between 2 and 3 meters” are
both incompatible and not overlapping. This cannot be the case for limited precision. The
possibilities themselves must be incompatible with each other but some of them must overlap,
or we would simply have a discrete topology. That is, suppose that 1 unit is the precision
limit, the statements “the position is between 0 and 1” and “the position is between 0.5 and
1.5” are incompatible because if we verify one we cannot verify the other. If we could verify
them both, we would measure at a smaller precision. So, overlapping cannot be defined in
terms of incompatibility.

Whether two statements overlap cannot be determined through incompatibility but must
be recovered from the precision of the disjunction. Suppose we have the following arbitrary
precision statements.

s1 =“the position is between 0 and 1 meter”
s2 =“the position is between 0.5 and 1.5 meter”
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s3 =“the position is between 2 and 3 meter”

The precision associated to all statements will be one meter. The precision for s1 ∨ s2 will be
one meter and a half while the precision for s1 ∨ s3 will be two meters. That is: the precision
for non overlapping statements sums. It may even be the case that if the precision sums,
statements must be incompatible but the converse is what fails.

This means that the measure we put on the possibilities cannot represent the precision
anymore. That is, dµ ≠ dx. We can imagine a relationship like dx2 = dµ2 + 1. This would
both make the precision go to 1 when the measure goes to 0 and dx ≃ dµ for large µ.



Chapter 5

Physical theories

5.1 Classical mechanics and infinitesimal reducibility

Classical mechanics can be recovered from three assumptions as shown in diagram 5.1, which
can be used as a guide throughout this section.

Figure 5.1: Assumptions for classical mechanics

The three assumptions lie on the left column. Each assumption leads to one or two key
insights that progressively lead to the physical concepts in the middle column. Each of these
is then mapped to its corresponding formal framework on the right.

Classical phase space

Classical phase space is recovered under the:
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Assumption I (Infinitesimal reducibility). The state of the system is reducible to the state
of its infinitesimal parts. That is, giving the state of the whole system is equivalent to giving
the state of its parts, which in turn is equivalent to giving the state of its subparts and so on.

Under this assumption, the state of the whole is a distribution over the states of the parts.
More precisely, let C be the state space for the whole system. We call particle the limit of
recursive subdivision. Let S be the state space for the particles. Then for each c ∈ C we can
find one and only one ρc ∶ S → R that describes the state of its parts. That is, the state of the
whole is a distribution over the infinitesimal parts. If S is a manifold, ∫U ρcdS gives us the
fraction of the system whose parts are in the region U of the state space.

The next step takes the rest of the section. We need to show that S has the structure of
phase space, with its conjugate variables. Mathematically, S is a symplectic manifold. The
key insight is that, on a manifold, ρc must transform both as a scalar function (the value must
depend on the point and not on the coordinates) and as a density. Classical phase space is
the only space that allows these invariant distributions.

The key concept is to keep track of the unit system, so we need precise terminology. We
call state variables a set of quantities ξa that fully identify a state.1 That is, we can write
each state s(ξa) as a function of the state variables. We call coordinate q ∈ ξa a particular
variable that defines a unit. The key problem is to understand how many coordinates we can
have for a given set of state variables.

We start with the simplest case, where one coordinate is sufficient to define the unit
system, which means the following four conditions:

1. the state variables can be written as ξa = {q, ki}
2. we can arbitrarily change coordinate to q̂ = q̂(q)
3. a change of coordinate induces a unique change over the remaining state variables k̂j =
k̂j(q, ki)

4. the density is the same regardless of the coordinates used.

Now we show that there can only be one ki. Suppose we change unit q̂ = q̂(q). Call the new

units ξ̂b = {q̂, k̂j}. We have ρc(ξ̂b) = ρc(s(ξ̂b)) = ρc(s(ξa)) = ρc(ξa) = ∣ ∂ξ̂
b

∂ξa ∣ρc(ξ̂
b). Therefore

the Jacobian ∣ ∂ξ̂
b

∂ξa ∣ must be equal to 1. Note that, since q̂ depends only on q, ∣ ∂ξ̂
b

∂ξa ∣ = ∣∂q̂∂q ∣ ∣
∂k̂j

∂ki
∣.

Suppose there is only one variable. Then we would have ∣∂q̂∂q ∣ = 1. But this would mean the

unit change cannot be arbitrary. Therefore we must have two or more variables and therefore

∣ ∂k̂b∂ka ∣ = ∣∂q∂q̂ ∣. This puts a constraint only on the determinant of the transformation. Suppose

there are three or more variables. This constraint is not enough to recover the transformation
uniquely and therefore q̂ would not fully define the units for all other state variables. This
means there must be two variables: q and a single k. Coordinate independent areas and
densities can only be defined on a two-dimensional manifold.

Now we generalize to multiple coordinates. We say two coordinates are independent if
changing the units for one does not induce a change of units for the other. Now suppose our
particle state space S is such that its units are fully defined by n independent coordinates
qi. Suppose you change the first coordinate q1 without changing the others. Then we will
find a variable k1 that changes as before so that the densities are invariant. Now change the

1In mathematical terminology, these are the coordinates of the manifold.
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second coordinate q2 in the same way while also fixing k1. Then we find a corresponding k2.
We can proceed in the same way until we exhaust all coordinates, which must also mean that
there are no state variables left. We find that S is 2n-dimensional, and the state variables are
ξa = {qi, ki}. We define an independent degree of freedom as the space charted by a pair of
such variables.

We can dress the result a bit more formally, and show that S is a symplectic manifold.
To characterize marginal distributions on each degree of freedom, we want to define integrals
of the form ∫Σ ρcω(dΣ) such that the density ρc is invariant. Therefore we need a two-form ω
that assigns an infinitesimal area to each infinitesimal surface, and we need ω to be invariant.
Because degrees of freedom are, at least locally, independent, the total number of states in a
volume is the product of the possible configurations of each degree of freedom. This means
the volume form is proportional to ωn. This cannot be degenerate (i.e. it must be nonzero for
each infinitesimal volume) since all regions of phase space must, by definition, contain some
states.. Therefore ω itself cannot be degenerate. As the degrees of freedom are independent,
the number of states on a surface does not change if we translate it across independent degrees
of freedom. If we imagine a parallelepiped, the integral over the surface must be zero (integrals
over opposite sides are equal and opposite). Therefore S must come equipped with a two-form
ω that is closed and not degenerate and therefore S is a symplectic manifold. By convention,
we set ω = h̵dqi ∧ dki = dqi ∧ dpi where pi = h̵ki.

The conclusion is that, under the infinitesimal reducibility assumption, the state space
of the system is a coordinate invariant distribution over the state space of the infinitesimal
parts. If the state space of the particles is a manifold, then it is a symplectic manifold, which
is the only type of manifold that supports coordinate invariant distributions.

Classical Hamiltonian mechanics

Having recovered the classical state space, the law of evolution can be recovered with the
following:

Assumption II (Deterministic and reversible evolution). Given the present state of the sys-
tem, all future (determinism) and past (reversibility) states are uniquely identified.

We first apply the assumptions to the motion of a single particle. Let λ ∶ R → S be the
evolution over time of the state of a particle. Under the assumption, this will be uniquely
identified by the initial state s0 = λ(t0) at the initial time t0. Secondly, we apply the as-
sumption to the density in the sense that all the particles that start with the same initial
state must end up in the same final state and vice-versa. That is, if ρ(λ(t0), t0) is the density
associated to the initial particle at the initial time, we must have that ρ(λ(t), t) = ρ(λ(t0), t0):
the density must remain the same throughout the evolution.

Now consider the integral ∫Σ ρω(dΣ). Both the region and the density will be mapped in

time to Σ̂ and ρ̂ respectively. The fraction of the system found in the new region will have to
be the same as the one found in the old region. That is, ∫Σ ρω(dΣ) = ∫Σ̂ ρω̂(dΣ̂). Since both
the integral and the density have to remain constant during the evolution, then ω will need
to remain the same. That is, the areas in phase space must be mapped to areas of equal size
and independent degrees of freedom must be mapped to independent degrees of freedom (or
volumes would not be mapped to equal volumes). The evolution is a symplectomorphism and
corresponds to Hamiltonian evolution. Intuitively, this is the inverse of Liouville’s theorem:
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instead of positing Hamiltonian evolution and finding conservation of areas and volumes,
deterministic and reversible evolution imposes the conservation of areas and volumes which
leads to Hamiltonian evolution.

The argument can also be constructed through statistical concepts (i.e. determinism and
reversibility means conservation of variance), thermodynamic concepts (i.e. determinism and
reversibility means only the state of the system is important for the evolution; the system is
therefore isolated and must conserve energy) or information theoretic consideration (i.e. un-
der deterministic and reversible evolution the amount of information does not change, so
information entropy has to be conserved).

Other notable results:

� phase space is the only space upon which information entropy is coordinate independent
and Hamiltonian evolution is precisely the evolution that preserves information entropy

� we can construct a classical analogue of the uncertainty principle
� the extension to relavistic mechanics only requires proper handling of the time coordi-

nate (and no additional assumptions)

Geometry of Hamiltonian/Lagrangian mechanics

The geometry of both Hamiltonian and Lagrangian mechanics can best be understood in the
phase space where time is added. This is technically a contact manifold.

For one degree of freedom, we can use standard 3D differential calculus. We have ξa =
{q, p, t}, Sa = {dqdt ,

dp
dt ,

dt
dt} and θa = {p,0,−H}. Note that ω = −dθ. The equations of motion are

given by S = −curl(θ) and the Lagrangian by L = θ ⋅ S. In fact, curl(θ) = {∂pθt − ∂tθp, ∂tθq −
∂qθt, ∂qθp − ∂pθq} = {−∂pH,∂qH,−1} and L = dq

dt p −
dt
dtH.

To generalize, we can set ξa = {qi, pi, t}, Sa = {dq
i

dt ,
dpi
dt ,

dt
dt} and θa = {pi,0,−H}. The

Lagrangian is still L = θ⋅S = Saθa = dqi

dt pi−
dt
dtH. The equations of motion should be dθ(S, ⋅) = 0.

In fact, dθ = ∂aθbea ∧ eb = (∂aθb − ∂bθa)ea ⊗ eb.

(dθ)ab =
⎡⎢⎢⎢⎢⎢⎣

0 δji −∂qiH
−δij 0 −∂piH
∂qjH ∂pjH 0

⎤⎥⎥⎥⎥⎥⎦
We find

dθ(S, ⋅) = Sa(dθ)abeb = 0

= (Sqi(dθ)qib + Spi(dθ)pib + St(dθ)tb)eb

= (Sqi(dθ)qiqj + Spi(dθ)piqj + S
t(dθ)tqj)eq

j+
(Sqi(dθ)qipj + S

pi(dθ)pipj + St(dθ)tpj)epj+

(Sqi(dθ)qit + Spi(dθ)pit + St(dθ)tt)et

= (−Spiδij + St∂qjH)eqj+

(Sqiδji + S
t∂pjH)epj+

(−Sqi∂qiH − Spi∂piH)et
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Spj = St∂qjH
Sq

j = −St∂pjH
−Sqi∂qiH − Spi∂piH = St∂piH∂qiH − St∂qiH∂piH = 0

Note that the last expression is not a new equation: it is identical to zero given the previous
two equations.

The equation −dθ(S, ⋅) = ω(S, ⋅) = 0 tells us that the displacement is the only direction
that does not contribute states. Therefore the area given by ω of any surface tangent to the
displacement field is zero. The action principle is just a straight consequence of this.

The interesting aspect is that a pseudo-Lagrangian with the associated action principle
always exists even in the case where it cannot be expressed as a function of q and q̇. That is,
an action principle always works for trajectories in {q(t), p(t)}.

Classical massive particles under potential forces

Having recovered classical Hamiltonian mechanics, we can further restrict the law of evolution
with the following:

Assumption III (Kinematic equivalence). The kinematics of the system (i.e. trajectories in
physical space-time) is enough to recover its dynamics (i.e. evolutions in state space).

First, as before, we apply the assumption to the particles, which means that for every
evolution in phase space there should be one and only one trajectory. Note that each space
variable xi is a coordinate, i.e. a state variable that defines a unit. In fact, the trajectories
can be fully described by those units and only those units. So we can say that qi = xi,
each qi will be paired with a conjugate pi and each state {qi, pi} will be mapped to one
and only one trajectory. At each point xi, then, infinitely many trajectories must pass, one
for each combination of {pi}. Since the trajectories are differentiable in xi, we can define
a velocity vi = dtxi. If the equations of motion were such that vi = vi(qi), then kinematic
equivalence would fail as the full trajectory would be determined only by qi. So we must have
vi = vi(qi, pi). The relationship must be invertible or kinematic equivalence would fail. At
any given time, then, we must have the following relationship:

xi = qi

vj = dtxj = vj(qi, pk)
(5.1)

Let us call weak equivalence the notion that vj(qi, pk) must be invertible at every qi and
therefore we can write pk = pk(xi, vj) as a function of position and velocity. In this case, the

Jacobian matrix ∂vj

∂pk
must be invertible. Since vj = dtqj = ∂H

∂pj
, the Hessian ∂2H

∂pk∂pj
must be

nonzero everywhere, and therefore must have the same sign which we take to be positive. In
this case, and only in this case, we can construct a Lagrangian from a Hamiltonian:

L(xi, vj) = vkpk(xi, vj) −H(qi(xi), pk(xi, vj)) (5.2)

These are also exactly the cases where the Lagrangian, using the principle of minimal action,
leads to a unique solution.
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Now we look at the whole distribution and how it can be expressed as a function of position

and velocity. We have ρ(qi, pj) = ∣J ∣ρ(xi, vj) = ∣ ∂vi∂pj
∣ρ(xi, vj) since

∣J ∣ =
RRRRRRRRRRRR

∂xi

∂qj
∂xi

∂pj
∂vi

∂qj
∂vi

∂pj

RRRRRRRRRRRR
=
RRRRRRRRRRR

δij 0
∂vi

∂qj
∂vi

∂pj

RRRRRRRRRRR

= ∣δij ∣ ∣
∂vi

∂pj
∣ − ∣0∣ ∣∂v

i

∂qj
∣ = ∣∂v

i

∂pj
∣ .

(5.3)

Note that while the value given by ρ(qi, pj) is coordinate independent, the value given by

ρ(xi, vj) depends on the choice of coordinate through ∣ ∂vi∂pj
∣. If xi truly sets the unit system

by itself, then ∣ ∂vi∂pj
∣ must be a function of position only. Similar considerations will also hold

for marginal distributions (i.e. distributions on a subset of the coordinates) which means all

components of ∂vi

∂pj
must be a function of position only. We set:

∂vi

∂pj
= 1

m
gij

∂pj

∂vi
=mgji

(5.4)

where m is the unit conversion constant between velocity and conjugate momentum while gij
represents the linear dependency.

If we integrate, we have:

vi = 1

m
gij(pj −Aj)

pj =mgjivi +Aj
(5.5)

where Aj are arbitrary functions. Note that:

vi = dtqi =
∂H

∂pi
= 1

m
gij(pj −Aj) (5.6)

We integrate yet again and find:

H = 1

2m
(pj −Aj)gij(pj −Aj) + V (5.7)

where V is another arbitrary function. We recognize this as the Hamiltonian for massive
particles under potential forces.

Kinematic equivalence, then, severely constrains the Hamiltonian and gives a physical
justification as to why Hamiltonian of that forms are the most important at a fundamental
level. They are the ones where all the dynamics is contained in purely kinematic degrees of
freedom.

5.2 Quantum mechanics and irreducibility

Quantum mechanics can be recovered swapping reducibility with irreducibility as shown in
diagram 5.2, which can be used as a guide throughout this section.
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Figure 5.2: Assumptions for quantum mechanics

The assumptions lie on the left column. Each assumption leads to one or two key insights
that progressively lead to the physical concepts in the middle column. Each of these is then
mapped to its corresponding formal framework on the right. Note that “quasi-static process”
and “conserved density” both independently lead to the same result of “unitary evolution”.

Irreducibility

The state space of quantum mechanics can be recovered under the:

Assumption IV (Irreducibility). The state of the system is irreducible. That is, giving the
state of the whole system says nothing about the state of its parts.

Under this assumption the state of the system is automatically an ensemble over the state
of the parts as preparation of the whole leaves the parts unspecified. For the same reason,
the entropy of these ensembles must be the same, or some ensembles would provide more or
less information about the parts. The whole task, then, is to characterize these ensembles
without making specific assumptions on the parts.

Let C be the state space of the irreducible system. Let us call fragment a part of the irre-
ducible system. The state of a fragment will be associated with a random variable uniformly
distributed over the possible fragment states. As discussed in the context of classical mechan-
ics(CITE), distributions over states must be invariant and symplectic manifolds are the only
manifolds over which invariant distributions can be defined. As we cannot say anything about
the state of the fragments, the dimensionality of this manifold must be irrelevant as long as
it is even dimensional. For simplicity, we can choose a two-dimensional one. Therefore we
are interested in the space of bi-dimensional uniform distributions formed by a pair of two
random variables A and B.
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The values of the variables themselves are not relevant, as they are not physically accessible
by assumption. However, the size of the system µ = ∫ ρdA ∧ dB is relevant. Without loss of
generality, we can rescale A and B such that the density ρ is not only uniform but unitary:
ρ = 1. This way the size of the system is directly proportional to the area covered by the
random variables. In other words: the more fragments there are, the more each fragment can
swap its state with another without changing the whole, the more uncertainty there is on the
state of the fragment, the higher the variance of the random variables.

Since only linear transformations will preserve the uniform distribution, we look to those.
These are translations, stretches and rotations. Translations do not lead to other physi-
cally distinguishable states since the exact values of A and B are not physically accessible.
Stretching of the distribution will correspond to an increase of the size of the system, which
is physically accessible. However, only the stretching of the area is of interest. So, without
loss of generality, we can set σA = σB = σ and we have µ ∝ σ2. Rotations just change the
correlations which, by themselves, are not physically accessible. However, under addition the
correlations still result in differences in variance and, indirectly, the size of the system, and
therefore are physically interesting. The space of transformations is therefore given by two
parameters a and b such that:

C = aA + bB
D = −bA + aB

(5.8)

Equivalently, we can use the complex number c = a + ıb to characterize the transformation,
which we can note as τ(c). The increase/decrease in size is given by a2+b2 = (a−ıb)(a+ıb) = c∗c
and the change in correlation is given by the Pearson correlation coefficient ρA,τ(c)A = cos arg c.

Putting it all together, we can characterize the state space C with a complex vector space.
The linear combination represents the mixing of the different stochastic descriptions. Two
vectors that only differ by a total phase are physically equivalent since a global change of
correlation does not change the distribution.

We can define a scalar product ⟨⋅∣⋅⟩ where the square norm induced corresponds to the
size of the system (or equivalently to the strength of the random variable) and the phase
difference corresponds to the correlations (the Pearson correlation coefficient). To see this,
note the formal equivalence between the variance and norm rules under linear composition:

σ2
X+Y = σ2

X + σ2
Y + 2σXσY ρX,Y

∣ψ + φ∣2 = ∣ψ∣2 + ∣φ∣2 + 2∣ψ∣∣φ∣ cos(∆θ)
(5.9)

The quadratic form, again, reflects the fact that the size of the system is proportional to the
variance of a random variable. Since the size of the system is fixed, we use unitary vectors to
represent actual states. The state of the system, then, is represented by a ray in a complex
inner product space.

Lastly, we need to define an expectation operator that returns the average value for each
physical quantity. This operator will have to be linear under linear combination of quantities:

E[aX + bY ∣ψ] = aE[X ∣ψ] + bE[Y ∣ψ]. (5.10)

It will not be linear under linear combination of states:

E[X ∣ψ + φ] ≠ E[X ∣ψ] +E[X ∣φ]. (5.11)
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Yet, it will have to be proportional to the increase in size and invariant under a total change
in correlation: E[X ∣τ(c)ψ] = c∗cE[X ∣ψ]. This leads us to associate to each physical quantity
a linear Hermitian operator X where E[X ∣ψ] = ⟨ψ∣X ∣ψ⟩. An eigenstate ψ0 of X corresponds
to a state where all the elements of the ensemble have exactly the same value. That is,
E[(X − x̄)2∣ψ0] = 0.

Note that an inner product space can always be completed into a Hilbert space. This may,
however, bring in objects that may not correspond to physical objects (i.e. infinite expectation
for some quantities). In general, we believe it is better to regard the (possibly incomplete)
inner product space as the physical state space and regard the completion as a mathematical
device for calculation. For example, the Schwartz space seems more physically meaningful
than the standard L2 space as it gives finite expectation of all polynomials of position and
momentum and, moreover, it is closed under Fourier transform.

Process with equilibria

The first type of process we consider is one with equilibria. The measurement process is
recovered as a special case.

Assumption V (Process with equilibria). Given an initial ensemble (i.e. mixed state), the
final ensemble is uniquely determined and remains the same if the process is applied again.

Under this assumption, the process can be characterized by a projection operator. Let ρ1

be the density matrix that characterizes a mixed state. Since the final mixed state must be
uniquely determined by ρ1, it will be P(ρ1) for some operator P. Similarly, if ρ2 is another
initial mixed state, its final operator will be P(ρ2). Note that, given any observable X the
expectation E[X ∣ρ1] = tr(Xρ1) is the trace of Xρ1. Similarly E[X ∣P(ρ1)] = tr(XP(ρ1)).

We can always create statistical mixtures of the ensembles and we must have E[X ∣aρ1 +
bρ2] = aE[X ∣ρ1] + bE[X ∣ρ2] since these are classical mixtures. But since these are classical
mixtures, the final state will also need to obey E[X ∣aP(ρ1) + bP(ρ2)] = aE[X ∣P(ρ1)] +
bE[X ∣P(ρ2)] for all possible X. Which means P(aρ1 + bρ2) = aP(ρ1) + bP(ρ2) Therefore the
operator P is a linear operator. Moreover, the process applied twice must lead to the same
result, which means P(P(ρ)) = P(ρ) for any ρ. That is, P2 = P. Therefore P is a projection.

Suppose, now, that we want to measure a quantity X. We want the final outcome, the
final ensemble, to be determined by the initial state, the initial ensemble. We also want
the measurement to be consistent in the sense that, if it is repeated immediately after, it
should yield the same result. Therefore the process will be a projection. We will also want
that the process does not distort the quantity. That is, E[X ∣ρ] = E[X ∣P(ρ)]. This means
that the eigenstates of X will correspond to equilibria of the process. Moreover, subsequent
measurements must give the same value, not just the same mixture. That is, if X1 is the
random variable after the first instance of the process and X2 is the random variable after the
second instance, P (X2 = x∣X1 = x) = 1. This means that E[(X − x̄)2∣P(ρ)] = 0 which means
the eigenstates of X are the only equilibria.

The measurement process is therefore simply a special case of a process with equilibria.

Deterministic and reversible evolution

The second type of process we consider is one that is deterministic and reversible, which is
the same as assumption II.
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Under this assumption, the process can be characterized by unitary evolution (i.e. the
Schrodinger equation). There are multiple different ways to see this. The first relates to the
more general idea that all deterministic and reversible processes must be isomorphisms in the
category of states. Since the state space is an inner product space, the isomorphism is unitary
evolution.

The second, is that if there is a set of quantities X0 at time t0 that fully identify the state
(i.e. the state is the only eigenstate of those quantities), then there must be a corresponding
set of quantities X1 that fully identify the state at time t1. This means that the evolution maps
basis to basis. Moreover, given the linearity of statistical mixtures, this will also mean that a
statistical distribution over X0 will have to map to the same distribution over X1. Therefore
the evolution must map linear combinations of that basis to the same linear combination. The
evolution is a linear operator. Since the total size of the irreducible system cannot change,
the operator must be unitary.

The third, is by constructing a quasi-static process from processes with equilibria, much
like one does in thermodynamics. The idea is that we have an infinitesimal time step, an initial
state ψt and a final state ψt+dt. We want P (ψt+dt∣ψt) = 1. This means that ∣⟨ψt+dt∣ψt⟩∣2 = 1.
This can happen only if the difference between initial and final states is infinitesimal. That
is, ⟨ψt+dt∣ψt⟩ = 1 + ıεdt where ε is a real number. Therefore, by convention, we can write
∣ψt+dt⟩ = I + Hdt

ıh̵ ∣ψt⟩ where H is a Hermitian operator.

Putting these perspectives together, time evolution is a unitary operator which can be

written as U = eH∆t
ıh̵ . If we start in an eigenstate of X, that is X ∣ψt⟩ = x0∣ψt⟩ we will end in

an eigenstate X̂ ∣ψt+∆t⟩ = x0∣ψt+∆t⟩ of another operator X̂ = eH∆t
ıh̵ Xe−

H∆t
ıh̵ .

In fact:

e
H∆t
ıh̵ Xe−

H∆t
ıh̵ ∣ψt+∆t⟩ = e

H∆t
ıh̵ Xe−

H∆t
ıh̵ U ∣ψt⟩

= e
H∆t
ıh̵ Xe−

H∆t
ıh̵ e

H∆t
ıh̵ ∣ψt⟩

= e
H∆t
ıh̵ X ∣ψt⟩

= e
H∆t
ıh̵ x0∣ψt⟩

= x0U ∣ψt⟩
= x0∣ψt+∆t⟩

(5.12)

This is consistent with assuming there is a quasi-static process that, at every t, has equilibria

identified by e
H(t−t0)

ıh̵ Xe−
H(t−t0)

ıh̵ . Note that, unlike thermodynamics, the equilibria during the
evolution are not set by external constraints but by the system itself. That is, X depends on
the initial state of the system.

In this light, the measurement processes and the unitary processes can be seen as particular
cases of the same type of processes, those with equilibria, which are defined as a black-box
from initial to final state. This is consistent with the irreducibility assumption as the inability
to describe the dynamics of the parts implicitly assumes that the dynamics of the parts is
at equilibrium and sets a time-scale under which the further description of the system (i.e.
non-equilibrium dynamics) would require describing the internal dynamics.
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5.3 Open questions and possible extensions

Directional degrees of freedom

Suppose we we want to assign a degree of freedom to a direction within an n-dimensional
physical space. Choosing a direction is the same as choosing a point on the (n−1)-dimensional
sphere. Since degrees of freedom must be two-dimensional, the sphere must be two-dimensional.
Furthermore, the only sphere that can be a symplectic manifold is the two dimensional sphere,
which means the only spaces where a direction can correspond to an independent degree of
freedom are three dimensional.

To find a pair of conjugate variables, consider the solid angle dΩ = sinϕzdϕzdθ
xy where ϕz

is the azimuthal angle. This is a quantity that is dimensionless and that is proportional to the
number of possible directions, therefore we can use it as a measure for the possible configura-
tions. We can express the two form for our space as ω(dθxy, dϕz) = h̵dΩ = h̵ sinϕzdϕzdθ

xy =
d(−h̵ cosϕz) ∧ dθxy = dθxy ∧ d(h̵ cosϕz). Set Sz = h̵ cosϕz as the component of the normalized
vector multiplied by h̵. We have that ω(dθxy, dSz) = dθxy ∧ dSz therefore θxy and Sz are
conjugate variables. Which means {θxy, Sz} = 1

We can now write all the components of the vector in terms of the conjugate variables.

Sx = h̵ sinϕz cos θxy =
√
h̵2 − S2

z cos θxy

Sy = h̵ sinϕz sin θxy =
√
h̵2 − S2

z sin θxy

Sz = h̵ cosϕz = Sz

These relationships can be used to calculate the Poisson brackets across components. One
can then study the motion under a simple linear Hamiltonian H = BiSi.

What needs to be understood is how this generalizes to the relativistic case.

Curvature for particle dynamics

The assumption of kinematic equivalence already gives us relativistic Hamiltonians. Does it
also give us a relationship between the curvature of the metric tensor and the forces acting
on the particles?

The setup is the following. Suppose we have two vectors in the extended phase space dξa =
{dqα,0} and dνa = {0, dpα}. Using the symplectic form we have the invariant dξaωabdν

b =
dqαdpα. Under the kinematic assumption we have dqα = dxα and dpα = mgαβduβ + qAα. We
have dξaωabdν

b = dxαmgαβduβ + dxαqAα.
Since the two terms have to match at each point and the symplectic form has the same

components at each point, can we constrain the change of the components of gαβ? The general
idea would be that components of gαβ may have to change in space/time coordinately with
Aα as to make dξaωabdν

b = dqαdpα remain the same. Note that derivatives in qα are taken at
constant pα while derivatives in xα are taken at constant uα.

Thermodynamics

The current thoughts to recover thermodynamics are based on the work on states and pro-
cesses within the general theory, which tells us that we can define state spaces only for systems
that can, at least in some processes, be described independently from the rest. The process
entropy, which in general is defined only for a specific process, can be abstracted and become
associated with the states themselves. Therefore we have an equation of state S(ξa) where ξa
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form a set of variables that fully identify the state. Moreover, one finds that the state entropy
is additive under system composition of independent systems.

In a process with equilibria different evolutions must converge to the same final state,
which means the process entropy increases and is maximized at equilibria. This gives the
general idea that entropy increases during an irreversible process. These results are therefore
valid in general, no matter what type of system is being described.

To find thermodynamics specifically, we need an additional set of assumptions. First, all
states are equilibria. Second, all state variables ξa are additive under system composition.
Third, one of the them, which we call internal energy U , is conserved under any evolution,
including irreversible evolution. We can then write the equation of state as S(U,xi) and define
the following quantities:

∂S

∂U
= β = 1

kBT
∂S

∂xi
= −βXi

(5.13)

We can then express the differentials as:

dS = ∂S

∂U
dU + ∂S

∂xi
dxi = βdU − βXidx

i

dU = TkBdS +Xidx
i

(5.14)

This is essentially Gibbs’ approach to thermodynamics.
To recover the laws, we need a few more definitions. We define a reservoir R as a system

for which the internal energy UR is the only state variable and the state entropy SR is a linear
function of UR. That is, ∂SR

∂UR
= βR = 1

kBTR
is a constant. We call heat Q = −∆UR the energy

lost by the reservoir during a transition.
We define a purely mechanical system M as a system for which the state entropy is zero

for each state. That is, SM(UM , xiM) = 0. We call work W = ∆UM the energy acquired by a
purely mechanical system during a transition.

Now, consider a composite system made of a generic system A, a reservoir R and a purely
mechanical system M . Consider a transition where we go to a new equilibrium. Since energy
is additive under system composition, let us call U the total energy. Since energy is conserved
we have:

∆U = 0 = ∆UA +∆UR +∆UM = ∆UA −Q +W
∆UA = Q −W

(5.15)

Since entropy is extensive, let us call S the total entropy. Since the process is going to an
equilibrium, the entropy can only increase. We have:

0 ≤ ∆S = ∆SA +∆SR +∆SM = ∆SA + βR∆UR + 0 = ∆SA +
−Q
kBTR

kB∆SA ≥ Q

TR

(5.16)
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Appendix A

Reference sheets for math and
physics

A.1 Set theory

Name Meaning

A = {1,2,3} set a collection of elements

N = {0,1,2, ...} natural numbers the set of numbers one uses to count

Z = {..,−1,0,1, ..} integers the set of all whole numbers

Q rationals the set of all fractions

R reals the set of numbers with infinite precision

C complex the set of numbers that represent a two dimen-
sional vector or rotation

a ∈ A in whether the element a is contained in A

A ⊆ B subset a set that only contains elements of the other
set

A ⊂ B proper subset a set that only contains elements of the other
set but not all of them; it is a subset but is not
the same set

A ⊇ B superset a set that contains all elements of the other set

A ⊃ B proper superset a set that contains all elements of the other set
but not just them; it is a superset but is not
the same set

A ∪B union the set of all elements contained in either sets

A ∩B intersection the set of all elements contained in both sets

A ∖B subtraction the set of elements in A that are not in B

AC complement the set of all elements that are not in A
it is equal to A ∖ U where U is the set of all
elements, which depends on context

A ×B Cartesian product the set of all ordered pairs (a, b) with a ∈ A and
b ∈ B

2A power set the set of all possible subsets of A
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Name Meaning

f ∶ A→ B function a map that for every element A returns an el-
ement of B

injective function a function that every distinct element of A map
that for every element A returns an element of
B

BA the set of all possible functions f ∶ A→ B

C(A,B) the set of all continuous functions f ∶ A→ B
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