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0.1 Foreword

In transitioning to advanced classes, a physics student will find their familiar
mathematical tools are inadequate to describe certain physical phenomena. The
methods of traditional vector calculus in three dimensions, though very useful
in electromagnetism and classical mechanics, are not always usable in higher
dimensions or in spaces more abstract than Euclidean space, such as those used
in general relativity and Hamiltonian mechanics. For that, we need differential
topology, which lays the foundation for differential geometry. When trying to
learn a subject in mathematics, however, you tend to find books written for
mathematicians, in a language that mathematicians are familiar with. As such,
they are filled with long definitions, proofs, and prose that, while mathematically
very precise, isn’t exactly light reading, and can even be overkill for a proper
physical understanding.

When mathematicians write for mathematicians, they develop and moti-
vate their mathematical tools for the purposes of ease of calculation and proofs.
There is, of course, nothing wrong with this. Mathematicians ought to be writ-
ing for mathematicians, and we shouldn’t try to force the constraints of our
field on theirs. For physicists, however, proofs and ease of calculation are not
the fundamental problems. Rather, we are trying to mathematically codify, or-
ganize, and characterize physical phenomena. The math that we use, therefore,
ought to be entirely physically motivated. When the math is developed properly
for our purposes in physics, there shouldn’t be any “purely mathematical” con-
structs without an actual physical meaning. We do not claim that we have fully
achieved this goal here,1 as there are open, unresolved problems in our work,
which will be addressed when appropriate. What follows is a purely physical
treatment of differential topology used in physics. While it is less mathemati-
cally rigorous than a typical math textbook, the hope is that the reader will be
able to gain an intuition for the math they use, so that the math isn’t simply
a black box beyond understanding, and that further study in the subject will
be aided by a solid grounding here. Furthermore, by clarifying the underlying
physical assumptions that we are working with at each step of the way, we will
be more certain of the meaning of each of our mathematical tools, as well as the
results we are able to derive. The focus is always on readability, applicability,
and physicality.

When we say “physical”, we refer to properties and characteristics that we
can directly measure in a laboratory. This definition is, at the moment, up for
refinement. Every tool we have in physics will at some level be an abstrac-
tion. Even something as simple as measuring mass will be to a certain extent
“nonphysical.” We cannot say, for instance, that an object in our laboratory
is precisely 5 kg, as our precision depends on the tools that we are using. We
can say that it is 5 ±0.01 kg, but this error isn’t a quantity that we directly
measure. It would also not be correct to say that it is purely a mathematical
abstraction. It is properly motivated given physical considerations, due to the

1This is the greater goal of the Assumptions of Physics project as a whole
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fact that our measurements are not infinitely precise.
We assume on the part of the reader a class in introductory classical me-

chanics and electromagnetism, as well as vector calculus. More advanced topics
in physics and mathematics may be touched on, but only for the use of giving
an example, or demonstrating the usefulness of these mathematical tools.
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Chapter 1

Physical Objects and Finite
Quantities

1.1 Physical objects and quantities

At the heart of scientific investigation is the identifying and organizing of objects
based on their properties, through measurement and experiment. This could be
anything from setting a block on a scale to determine its weight to determining
the species that a particular animal belongs to. For our purposes here, we will be
dealing only with properties that can be described using real numbers, such as
mass, temperature, velocity, etc. Identifying an object with a property involves
first deciding which cases are possible and which are not. For example, when
placing an object on a scale, you will not get a negative number (assuming, of
course, that the scale has been properly zeroed). So, we have a set U , which
the possible values the physical property can take on are contained in. The
identification of a particular physical property with a real number is a quantity.

Definition 1.1. A quantity is a function q : U → R that assigns a measurable
value to a physically possible case.

It’s possible, however, that one single quantity won’t be enough to fully
characterize an object. This presents an issue when trying to distinguish two
objects. Say, for instance, that we’re talking about weather. Knowing what the
temperature will be tomorrow is certainly useful, but as anyone from Florida
can tell you, 80oF with 95% humidity is very different from 80oF with 30%
humidity. In characterizing objects, then, we will often want to define more than
one quantity. By defining enough quantities to fully characterize one object,
but not so many such that we have redundancies, we can define a coordinate
system.

Normally, we think of coordinate systems in the context of quantifying an
object’s position, in terms of its x-, y-, and z-coordinates. Though it may be
an abuse of terminology, we will use the same phrase to describe coordinates

7



8 CHAPTER 1. PHYSICAL OBJECTS AND FINITE QUANTITIES

in other contexts. Consider, for instance, phase space. Configurations in phase
space are fully characterized by position and momentum, which would be our
two quantities, thus giving us a coordinate system. As another example, we can
look at a system described by the ideal gas law. In this case, we would create a
coordinate system with pressure, volume, and temperature.

Definition 1.2. A coordinate system Q is a collection of n quantities qi :
U → Rn such that there is a one-to-one relationship between the physical objects
in U and elements of Rn.

With coordinate systems now defined, we recognize that in many instances,
two different coordinate systems function just as well to describe a certain ob-
ject. Mathematically, this occurs when two sets, each with defined coordinate
systems, overlap. The points that lie within this overlapping section may be
described in either coordinate system. To give an example from geography, con-
sider an atlas of the world: a collection of maps. Depending on the atlas you’re
looking at, certain places may show up in multiple maps. Consider Moscow,
for instance. It could very well show up on a map of Asia, perhaps in a square
labeled B2, while also showing up on a map of Europe, perhaps in a square
labeled C8. Either way of describing Moscow’s position is equally valid, and
you can freely “transform” between the coordinate systems as far as Moscow is
concerned. Alternatively, consider the “point” Lisbon. Lisbon will show up on
a map of Europe, perhaps in square F1, but you would never find Lisbon on
a map of Asia. Therefore, its position may only be described in terms of the
coordinates on the map of Europe.

Definition 1.3. Given two coordinate systems Q : U → Rn and Q′ : V → Rn
such that U ∩ V 6= ∅, we call a coordinate transformation the function
f = Q′ ◦ (Q)−1 : Rn → Rn.

U Rn

V Rn

Q

U∩V
Q′

Figure 1.1: This is a commutative diagram that shows how sets relate to each
other, and what functions are used to relate them. The double sided arrows
denote a one-to-one relationship between the elements of the two sets related
using the operation above the arrow

Because of the poles, every location on Earth cannot be equally quantified
with only one set of coordinates. This can be plainly seen on a typical flat map,
such as a Mercator Projection. The most immediately obvious result of this
flattening is that land proportions grow the closer to a pole they are, making
Greenland appear massive, and the Sahara proportionally far smaller. The more
important, but perhaps more subtle, outcome is that because the poles have in



1.2. SUB-MANIFOLDS AND K-SURFACES 9

a sense been unraveled, the South Pole, which ought to be a single point, is an
entire line along the southern edge of the map. A projection of the Earth onto a
flat surface, such that one point on the Earth maps to one point on the surface,
requires at least two separate maps. For instance, you could have a map of the
top hemisphere, centered at the north pole, and then of the bottom hemisphere,
centered at the south pole. From the Earth, then, we define manifolds as the
general object that we project onto flat space.

Definition 1.4. A manifold is a set of physical objects X such that for any
x ∈ X there exists a U ⊂ X that contains x and upon which a coordinate system
Q is defined. Manifolds have dimensionality, as determined by the dimension
of their coordinate systems.

Earlier, weather was given as an example of a set of possible cases of a
system, with readings such as temperature and humidity allowing us to define a
coordinate system. In this context, the “manifold” would be the set of possible
weather configurations, with each point being a single weather report. Another
example of a manifold would be the possible results of a blood drawing. The
doctor takes your blood for analysis, the results of which are collected on a
report, detailing things such as blood pressure, cholesterol levels, white blood
cell count, etc. Each point on that manifold, therefore, would be a specific
combination of blood pressure, cholesterol, and so forth. Further examples
include:

� The conditions of your car, with the dials on the dashboard being your
method of reading them

� The freight on a ship, with the bill of lading detailing amounts

� Any sort of information that can be condensed down to a series of real
numbers

The variety of examples is to show the ubiquitousness of manifolds, and that
they are very familiar, everyday objects. This versatility proves their usefulness
in physics, and in scientific investigation in general. But unlike in the case of the
Earth, manifolds do not in general come prepackaged with a notion of distance.
What does it mean, for instance, for there to be distance between weather re-
ports? Perhaps you can argue that distance comes into play by specifying where
exactly the weather report was taken, but this is simply the geography exam-
ple again under a different name. No, defining distance on manifolds requires
first the definition of a particular mathematical structure, which we will not be
addressing here.

1.2 Sub-manifolds and k-surfaces

Consider again the weather report example, where we are taking into account
where exactly the report was taken. Perhaps we decide to hold fixed where the
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weather report is taken (thereby making specification of the location redundant
when comparing different readings). This takes us immediately from one man-
ifold to another, where the latter has fewer dimensions than the former, and
where any point on the latter is also a point on the former. Thus, geography is
a submanifold of the weather report.

Definition 1.5. Consider a manifold X of dimension n, and a manifold Y of
dimension k, such that k ≤ n. Y is a submanifold or a k-surface1 of X if
any point on Y is also a point on X (Figure 1.2).

X Rn

Y Rk

Q

Q|Y

Figure 1.2: Q|Y is restriction notation. It means that it is the function Q
mapping between X and Rn, but restricted to map only from Y to Rk. We can
use this notation since Y and Rk are subsets of X and Rn, respectively.

Definition 1.6. For some manifold X of dimension n, Sk is the set of all
possible k-surfaces of dimension k ≤ n, and S = ∪nk=0S

k is the set of all
surfaces.

We can go even further in our description of k-surfaces. First, we can hold
certain quantities fixed, and vary the others. For instance, say we allow only
one quantity to vary, while holding the others fixed. In the weather example, we
could vary only temperature, holding all other properties fixed. On the manifold
containing all weather reports, this varying of temperature would manifest itself
as a line on the manifold, the points on which being weather reports whose values
for all quantities besides temperature are identical.

Definition 1.7. A coordinate line is the set of points in Rn obtained by
allowing one quantity to vary and holding the others fixed.

This same process can be done with any arbitrary number of fixed and vary-
ing coordinates. In general, a surface formed through the varying of coordinates
is a coordinate k-surface.

Definition 1.8. A coordinate k-surface is the set of points in Rn obtained
by allowing k quantities to vary and holding (n-k) quantities fixed.

When varying coordinates to create coordinate lines, surfaces, volumes, etc.,
the varying can be brought to a halt by the geometry of the object that we’re

1In general, we will be using the term “k-surface”, instead of “submanifold.” There will be
many terms throughout this thesis prefaced by “k-”. In general, this means that the object
in question has k dimensions, and can be organized by their dimensionality.
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working on. Where the varying ends lies the boundary of our surface. Suppose
our manifold is the Earth (the entire Earth, not just the surface). If we assume
that we can freely move through the entirety of the Earth’s crust, but may
not leave the surface of the Earth, we may say that the Earth manifold has a
boundary, that being the surface of the Earth. Because radius is held fixed on
the surface, the boundary of the Earth has a dimensionality of 2, instead of 3.

Definition 1.9. Given k-surface σk ∈ Sk, the boundary of σk, denoted by
∂σk ∈ Sk−1 is the limit of varied coordinates. Points lying on the boundary are
called boundary points.

We can map between a k-surface and its boundary, if it exists, with the
boundary operator. I.e., if σ2 is a sphere, ∂σ2 is its boundary: its surface.

Definition 1.10. For k-surface σk ∈ Sk, the boundary operator ∂ : Sk →
Sk−1 gives the set of boundary points of σk.

Intuitively, we can in general talk about the boundary of a k-surface being
a wall, beyond which a point confined to the k-surface cannot go. In this way,
the surface of the Earth acts as a boundary of the Earth. On the other hand,
suppose we are restricting ourselves now just to the boundary of the Earth. We
can travel along the surface as long as we wish in any direction without being
stopped by any kind of wall. Thus, the surface of the Earth does not have a
boundary. The fact that the boundary of a k-surface does not have a boundary
is true for general k-surfaces, but proving it is beyond the scope of this project.

Corollary 1.11. Given σk ∈ Sk, ∂σk ∈ Sk−1, and ∂∂σk = ∅.

1.3 Linear Functionals of K-surfaces

We began our discussion of manifolds by assigning real number values to in-
dividual points on a more abstract space. This related to the determination
of physical cases, and we were able to define coordinate systems. We will now
be extending that process to arbitrary submanifolds, such that we will be able
to assign real numbers to lines, areas, volumes, etc., corresponding to some
physical property of that object. This may sound much more abstract than
it actually is. In reality, all that we are doing here is quantifying and mathe-
matically formalizing scientific investigation with as few tools as possible. The
greater importance of what we are doing here lies in the fact that we are devel-
oping our mathematical structure for physical investigation while imposing as
few assumptions as possible. We want our tools to work in general, being just
as valid for working in phase space, or on a map of the earth.

Consider now a topographic map of the Earth (a map distinguishing eleva-
tions), which we will denote by M . A coordinate system Q : U ⊂ M → R will
therefore take into account not only lateral and longitudinal positions, as in the
geography example before, but also elevation. Now, let’s place a baseball on
this topographic map, and allow it to roll freely under the force of gravity and



12 CHAPTER 1. PHYSICAL OBJECTS AND FINITE QUANTITIES

resisted by friction. Call the baseball’s path λ. λ is simply a 1-surface on M .
As the baseball travels along λ, we can determine the work done on the baseball
by gravity and friction.

Denote the work done on the baseball as W : S1 → R, such that W (λ) is
the work done on the baseball along λ. Specify now three points along λ: A,B,
and C, such that A ∈ λ is the starting point of the path, C ∈ λ is the ending
point of the path, and B is some point between them. We can say, therefore,
that

W (λA→C) = W (λA→B) +W (λB→C). (1.12)

That is, we can say that the work done over the entire path is equal to the work
done over one portion of the path plus the work done over the rest of the path.
It follows, therefore, that we can break up the path into as many finite paths as
we want, determine the work on each of them, and sum them to get the overall
work. In other words,

W (λ) =

n∑
i=1

W (λi) (1.13)

for a line split into n pieces (not necessarily equally large), stuck end-to-end.
The function W is therefore linear.2 We call such a function a 1-functional, or
a linear functional over 1-surfaces.

As another example, consider a surface σ, and a function Φ : S2 → R
that determines magnetic flux, such that Φ(σ) is the magnetic flux through σ.
Similarly to the case with λ, we may break up σ into finite constituent pieces,
attached side-to-side. We therefore have that

Φ(σ) =

n∑
i=1

Φ(σi) (1.14)

for σ broken up into n different pieces, requiring once again that the pieces are
stuck exactly side-to-side. We call Φ a 2-functional, or a linear function over
2-surfaces.

This sort of linear functions over objects extends to the general kth case. We
define therefore k-functionals fk : Sk → R as linear functionals over k-surfaces,
meaning that such a functional applied over the entire k-surface is equivalent to
applying the functional to component pieces of the k-surface and summing the
contributions, as long as the components overlap only on their boundaries.

One more specification is necessary: the fact that fk must commute with
the limit. Suppose we have a sequence of lines {λ}∞i=1, such that they approach
a single line λ. That is,

lim
i=1→∞

λi = λ. (1.15)

2To be mathematically precise, our functionals are not quite linear. Linearity implies a
mapping between vector spaces, and Sk is not a vector space. Talking about the functionals
as linear gives the right idea though, so we will continue to do so.
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If we have a 1-functional f , each individual f(λi), as well as f(λ) itself, will
separately take on a value. We require that the limit holds, meaning that

f
(

lim
i=1→∞

λi

)
= f(λ). (1.16)

To give an example where this condition is not fulfilled, suppose we have a
straight line λ, and we want to determine its length. Say the width and height
both equal a. Therefore, its length is

√
2a. However, the length of the horizontal

and vertical components together is 2a. Further subdividing each horizontal and
vertical component will create a sequence that does, in the limit, converge to λ.
However, the length of this sequence will always, even in the limit, remain 2a.
Therefore, the length functional does not commute with the limit.

Figure 1.3: As the horizontal and vertical components are subdivided, the length
of the overall hypotenuse remains

√
2a, while the sum of the lengths of the

horizontal and vertical components remains 2a.

Definition 1.17. A linear function of k-surfaces, or k-functional, is a
function fk : Sk → R such that:

I. fk is linear: for σk1 , σk2 ∈ Sk, if

σk1 ∩ σk2 ⊆ ∂σk1 ∪ ∂σk2 , (1.18)

then

fk(σk1 ∪ σk2 ) = fk(σk1 ) + fk(σk2 ); (1.19)

II. fk commutes with the limit. That is, the limit of the function is the
function of the limit.

Definition 1.20. Fk is the set of all functionals of dimension k, and F =
∪nk=0Fk is the set of all functionals.

Suppose we have a volume τ within a greater volume of arbitrary fluid. Say
that the fluid is free to flow through the surface of τ , and that we are able to
contract and expand τ as we wish.3 The fluid flux through the surface of τ4

3The flow is compressible
4You don’t usually talk about flux through a volume, but the language is useful for this

example
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can be determined without worrying about the behavior of the fluid within and
outside of τ . The fluid can be swishing about in any sort of way, but as long
as it doesn’t cross the surface of τ , it doesn’t make one bit of difference as to
the flux through τ . The flux, therefore, depends only on the boundary of τ :
∂τ . Therefore, if we have a method of determining the overall flux through τ , it
would be effectively identical to a method that determines the flux through ∂τ .
Speaking mathematically, this means that in this case, a particular 2-functional
over ∂τ would suffice for talking about the effect over all of τ . We are already
able to attack this problem through an operation on the surface, but now we
want to do the same thing through an operation on the functional. Denoting
the flux 2-functional as Φ, we define the boundary functional ðΦ of Φ as the
functional that satisfies

Φ(∂τ) = ðΦ(τ) (1.21)

Definition 1.22. Given ð : Fk → Fk+1 and fk ∈ Fk, the boundary func-
tional ðfk ∈ Fk+1 is the functional with the property that ðfk(σk+1) = fk(∂σk+1).

Let’s examine now how the boundary functional works in practice by re-
turning to the work functional. We will be once again considering W ∈ F1 and
λ ∈ S1, with the work over λ given as W (λ). We will assume now that the
work done over λ is path independent. The implication of this is that we are
only considering conservative forces such as gravity. In other words, if we have
any closed path λ and a work function W defined with a conservative force, we
have that

W (λ) = 0. (1.23)

We call functions such as W exact functionals.

Definition 1.24. An exact functional is a k-functional fk ∈ Fk such that, if
∂σk = ∅ for σk ∈ Sk, then fk(σk) = 0.

Recall that for any k-surface σk, ∂∂σk = ∅. This, together with the definition
of the boundary functional, suggests an interesting property of k-functionals that
must be explored and formalized. Suppose we have f ∈ Fk and g ∈ Fk+1, such
that g = ðf . For (k+1)-surface σk+1 ∈ Sk+1, we have that

g(σk+1) = ðf(σk+1) = f(∂σk+1). (1.25)

So far so good. But now introduce h ∈ Fk+2, such that h = ðg, as well as
σk+2 ∈ Sk+2. We have then that

h(σk+2) = ðg(σk+2) = ððf(σk+2) = ðf(∂σk+2) = f(∂∂σk+2). (1.26)

Keeping in mind that ∂∂σk+2 = ∅, we have that

f(∂∂σk+2) = f(∅). (1.27)
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f(∅) must be zero, as

f(∅) = f(∅ ∪ ∅) = f(∅) + f(∅) = 2f(∅), (1.28)

so

f(∅) = 2f(∅), (1.29)

so f(∅) = 0 for any f .

Proposition 1.30. A k-functional applied to the empty set gives zero.

Because f(∅) = 0 and h(σ) = ððf(σ), we have that h(σ) = 0 for any σ,
closed or not, making it the zero functional.

Proposition 1.31. For any k-functional f , ððf will be the zero functional.

The takeaway from this is that if we have a k-functional f ∈ Fk, then
ðf ∈ Fk+1 will necessarily be exact. We can see this by saying that if g = ðf
and ∂σk+1 = ∅, then

g(σk+1) = ðf(σk+1) = f(∂σk+1) = 0. (1.32)

And furthermore, if we have an exact functional f ∈ Fk, then ðf = 0, and f is
the boundary functional of some other function in Fk−1.

Proposition 1.33. If k-functional f ∈ Fk is exact, then there exists some
functional g ∈ Fk−1 such that f = ðg. g is the potential of f .

This allows us an alternate way of determining, for instance, work from a
conservative force. If we have a work functional that is the boundary func-
tional of another functional, then the force associated with it will necessarily be
conservative.

Potentials are not uniquely defined for each k-functional. With the propo-
sitions above, we are able to say that if f = ðg, then the value of g is specified
up to the introduction of some other exact functional.

gk−1(σk−1)→ gk−1(σk−1) + ðhk−2(σk−1) = gk−1(σk−1) + hk−2(∂σk−1)
(1.34)

This introduction of the exact functional ðh keeps the value of g(σ) invariant
if σ is closed: ∂σ = ∅. However, it is not necessarily invariant if σ is not
closed: ∂σ 6= ∅. An transformation on a functional that keeps that functional
invariant on closed surfaces, but not necessarily on open surfaces, is a gauge
transformation.

Definition 1.35. Suppose we have a k-functional f ∈ Fk and k-surface σ ∈ Sk.
A gauge transformation G : Fk → Fk is a transformation on functionals
such that if σ is closed, then G(f)(σ) = f(σ).
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We motivated the gauge transformation through the addition of an exact
functional. We will show now that this was not incidental, and that in fact,
every gauge transformation is simply the addition of an exact functional. From
the definition, we have that if σ ∈ Sk is closed, G(f)(σ) = f(σ). Introduce now
δ ∈ Fk, such that

δ(σ) = G(f)(σ)− f(σ) (1.36)

for any σ. If σ is closed, G(f)(σ) − f(σ) = 0, so δ(σ) = 0, so δ is an exact
functional. Therefore, after rearranging, we have in general that

G(f)(σ) = f(σ) + δ(σ). (1.37)

And since δ is exact, we can express it as the boundary functional of a (k-1)-
functional. So, we see in general that

G(f)(σ) = f(σ) + ðh(σ), (1.38)

for some (k-1)-functional h.



Chapter 2

Infinitesimal Objects

2.1 Differentiable manifolds

In the previous section, we discussed functionals applied over k-surfaces. With
the rules we’ve established, we can break up a k-surface into multiple sections,
such that applying a functional over the entire surface is equivalent to applying
it to each of the sections individually, and then summing their contributions.
Importantly though, we remained entirely finite. This is important, as in the
real world, we deal only with the finite. We measure mass, not density, for
instance. Nevertheless, we were able to finally define boundary functionals, and
their relationship with the boundary of surfaces. Now, we will be examining
surfaces under the condition that we can break them up into infinitesimally
small pieces. How would our k-surfaces behave, and furthermore, what happens
to the functionals? We shall see that the tools we’ve already defined have a
close correspondence to infinitesimal varieties, which may be more familiar to
the reader. The existence of infinitesimals on our manifolds allows us to define
tangents, and infinitesimal functionals along those tangents. Such manifolds are
differentiable manifolds.

Technically speaking, differentiability is a property not of the manifold, but
of the coordinate systems that are defined on it. And furthermore, not every
coordinate system is differentiable. This is because “differentiability” itself is
not defined in terms of one coordinate system. Rather, differentiability arises
due to a property of coordinate transformations between coordinate systems.
In order to maintain differentiability on our manifolds, we will be constraining
ourselves to coordinate systems which are differentiable to each other. Essen-
tially, what we’re doing here is looking at an entire manifold, with all of its
constituent subsections and thereon defined coordinate systems, and disregard-
ing the coordinate systems that are not differentiable. This property manifests
itself as the coordinate transformation between subsets of the manifold being
smooth.

As a justification, consider a one-dimensional function one would encounter

17
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in an introductory calculus class: f : R → R. When we say that f is differen-
tiable, we are saying that it is differentiable in the variable, or with respect to
the variable. So, the derivative of f with respect to its variable (say, x) is df

dx .
Translate this now into the language of manifolds. If differentiability is to be
defined on a point on the manifold, it’s clear that this must be done in terms of
the coordinates used to define that point.

Definition 2.1. A differentiable manifold is a manifold X of dimension
n such that if there are overlapping subsets U and V with defined coordinate
systems Q : U → Rn and Q′ : V → Rn, then the coordinate transformation
f = Q ◦Q′−1 is smooth.

2.2 Vectors and Covectors

Let W ∈ F1 be the work functional as described in section 1.3, and let λ ∈ S1

be the line that we are passing it. So, we can say that W (λ) =
∑n
i W (λi),

where the ending point of each λi is the starting point of each λi+1. In the limit
as n tends to infinity, this expression becomes

W (λ) =

∫
λ

f(dλ) (2.2)

for a function f . Naturally, this function will be a force function, returning
the work over each infinitesimal segment. Each dλ represents an infinitesimal
segment along the line λ which, if combined together, will return λ. We call the
infinitesimal segments of our line vectors.

Definition 2.3. A vector v1 ∈ V 1 is an infinitesimal segment along a line. A
tangent space, then, is a collection of vectors that share a fixed point.

As we are breaking up the line into infinitesimal segments, we see that the
functional applied over the line takes an infinitesimal form as well. The work
function has become a force that takes a vector and returns that vector’s contri-
bution to the overall work. Such functions applied over infinitesimals are called
covectors.

Definition 2.4. A covector ω1 : V 1 → R is a linear function of vectors.

Concretely, consider a spring with spring constant k and with a mass m
attached to the end, oscillating without drag. The work necessary to pull the
mass from the point x = a to x = b (being the starting and ending points of

the line λ) is W (λ) =
∫ b
a
−kxdx.1 The infinitesimal segment (the vector) is

1We are technically getting ahead of ourselves here by presenting the function with specific
coordinates. We have been entirely coordinate-free so far, and will have to wait until section
2.4 for the discussion of working with coordinates
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dxex, and the force (the covector) is −kxex.2 In general, a 1-functional over a
1-surface is the integrated form of a covector over vectors.

R

S1 V 1

f1 ω1

∫
While we are not going to go through the trouble of proving this, we can say

for any 1-functional, we will be able to find a covector that, when integrated,
will be “suitably close” to the functional. This is similar to the fact that any
non-smooth line may be approximated with arbitrary precision by a smooth
curve.

Proposition 2.5. All linear 1-functionals have a corresponding covector, such
that for f : S → R, f =

∫
λ
ω1(dλ). In words, a linear functional applied over a

line is the same as an integral of a covector over the infinitesimal segments of
that line.

2.3 K-vectors and K-forms

The one-dimensional case is enlightening for showing the relationship between
our finite, measurable quantities, and the abstraction of the infinitesimal. How-
ever, we are not always dealing with only one-dimensional quantities. Just as
we can have 2-dimensional finite quantities, such as a flux functional and a 2-
dimensional surface, we will show that we can have 2-dimensional infinitesimal
functionals, and 2-dimensional infinitesimal surfaces, and that furthermore, we
can have such constructions in arbitrary dimensions.

Let Φ ∈ F2 be a functional for flux, just as in section 1.3; σ ∈ S2 be some
surface that allows fluid to pass through it. Mathematically, this is another
example of a k-functional being passed a k-surface, and returning a real number.
So, we may write that

Φ(σ) = Φ(σ1) + Φ(σ2) + Φ(σ3) + ... =

n∑
i=1

Φ(σi) =

∫
σ

B(dσ) (2.6)

as n tends to infinity. This appears to be identical to the case where k=1. The
difference comes in by realizing that the surface σ may not be broken up into
infinitesimal line elements. Rather, we have to use infinitesimal paralellograms.
Just as Φ is a 2-functional and σ a 2-surface, we call the infinitesimal paral-
lelograms dσ 2-vectors, and B a 2-form. We see that the general relationship

2Note that ex is not an exponential function; that is, e raised to the power of x. Rather, it is
a basis vector, which we are, once again, technically getting ahead of ourselves by introducing
at this point. Furthermore, the x being raised in the covector and lowered in the vector is a
meaningful difference. This will be explained further later.
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between forms and functionals, and vectors and surfaces carries over into the
two dimensional case.

We propose that in the general kth case, we can through integration connect
our forms with functionals, and vectors with surfaces. Let fk ∈ Fk be a k-
functional and σk ∈ Sk a k-surface. We can say that

fk(σk) =

n∑
i=1

fk(σkn) =

∫
σk

ωk(dσk) (2.7)

as n tends to infinity for some function ωk. We call ωk a k-form, and dσk a
k-vector.

Using line segments or parallelograms as our infinitesimal elements is not
sufficient on a k-surface. At this point, we must make use of infinitesimal
parallelepipeds: a k-dimensional shape whose sides are (k-1)-parallelepipeds.
Whereas before when the line segments would be stuck end-to-end, the paral-
lelepipeds will be stuck side-to-side, such that one side of one parallelepiped
makes up one side of the other. We can say that the infinitesimal elements in
the cases of k=1 and k=2 are still parallelepipeds. In the case of k = 1, an
infinitesimal segment may be thought of as a parallelepiped without width or
height. By that same thinking, when k = 2, an infinitesimal area on a 2-surface
may be thought of as a parallelepiped without height.

Definition 2.8. A k-vector vk ∈ V k is an infinitesimal parallelepiped on a
k-surface. A vector as discussed previously is a 1-vector.

Definition 2.9. V k is the set of all vectors of rank k and V = ∪nk=0V
k is the

set of all vectors.

Definition 2.10. A k-form ωk : V k → R is a linear functional that con-
verts an infinitesimal parallelepiped into a scalar value. A covector as discussed
previously is a 1-form.

Definition 2.11. Ωk is the set of all forms of dimension k and Ω = ∪nk=0Ωk is
the set of all forms.

To finish up the generalization of the previous section, we establish the
relationship between k-functionals and k-forms, and between k-surfaces and k-
vectors. The latter two are infinitesimal variants of the former two, and are
related to one another by an integral.

Proposition 2.12. Every linear k-functional has a corresponding k-form, such
that for fk : Sk → R, fk =

∫
σk ωk(dσk). In words, a linear functional applied

over a k-surface is the same as an integral of a k-form over the infinitesimal
parallelepipedes of that k-surface.

Now is a good time to emphasize once again that we consider “physical”
that which can be directly measured in a laboratory. Infinitesimals, therefore,
are not truly physical. They are a limit of the finite case. We do not measure
ωk(dσk). Rather, we measure

∫
σk ωk(dσk).
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Suppose we have a mass functional M ∈ F3 and some object τ ∈ S3, such
that M(τ) is the mass of τ . As long as we remain finite, we can break up τ
as we wish, determine the mass of each of the pieces, sum them, and we would
get the same result as determining the mass of the entire ensemble, all while
remaining entirely physical. The mass functional M remains unchanged. As
soon as we decide that we are going to be considering the infinitesimal limit,
however, our tools change shape. We have that M(τ) =

∫
τ
ρ(dτ), where ρ is a

3-form that determines density. It is fascinating to see that as we change the
assumptions that we are working with, the math will, when properly physically
motivated, change form as well to reflect these new assumptions.

2.4 Wedge Product and Perpendicularity

Consider the problem now of constructing surfaces, volumes, and their higher
dimensional equivalents. Arranging two 1-vectors ~a and ~b such that they both
share a starting point allows one to construct a paralellogram (a 2-vector) with
sides made up of the 1-vectors. The area and orientation of this 2-vector depends
on the magnitudes and orientations of the two component 1-vectors. In 3D
space, this orientation would be the line normal to the 2-surface, but we are not
necessarily in 3D space. By flipping the direction of one of the vectors, the area
of the resulting 2-vector would be the same as before, but the orientation (the
normal) would be flipped. This same mechanism works for a 1-vector and a
2-vector, creating a 3-vector, as well as for the arbitrary m-vector and n-vector,
creating an (m+n)-vector (though for vectors of degree greater than three, this
is much harder to visualize). We require also that our method for combining
k-vectors is anticommutative or skew-symmetric. To see why it must be this
way, consider an x-y plane, where the x is traditionally the horizontal, and y
the vertical. Switch now x and y, so that x is now the vertical, and y is now
the horizontal. Rotating the axis such that y is once again the vertical will
orient the x-axis in the “negative” horizontal direction. You could say that this
is a (-x)-y plane. It is thus impossible to go from a y-x plane to an x-y plane
purely through rotation. Instead, you need to also flip one of the coordinate
axes, meaning x → -x, or y → -y. Once that is done, the original x-y plane can
be reached.

Figure 2.1: After switching the axes, merely rotating them cannot return you
to the original x-y plane. An additional flip of one of the axes is necessary.
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The tool that combines k-vectors antisymmetrically is the wedge product.

Definition 2.13. The wedge product ∧ : V k×V j → V k+j combines k-vectors
antisymmetrically to generate parallelepipeds.

This discussion of joining vectors together and the resulting normal vectors
brings to mind a tool from vector calculus: the cross product. If we have two
vectors ~a and ~b in R3, the cross product of them ~a × ~b will return the vector
perpendicular to the two of them. Furthermore, by flipping the order of the
product, a minus sign is introduced, indicating that the magnitude is the same,
but the orientation is flipped. That is, ~a × ~b = −(~b × ~a). It is likely the
case that the reader will be more familiar with the cross product, and may
be wondering why we will be forgoing it in favor of the less familiar wedge
product. This is because the cross product fails to generalize to any space
beyond R3. It is in some sense a specific case of the wedge product, but with
some crucial fundamental differences. The cross product depends on there being
only one linearly independent direction normal to a surface, which is the case
in R3. In R4 on the other hand, there are two linearly independent directions
normal to each surface, and in general n-dimensional space, there will be (n-
2) linearly independent perpendiculars. What we do instead is keep track of
components using the two directions tangent to the surface, rather than by the
direction normal to the surface. As an example, consider the magnetic field
B. In most treatments of electromagnetism, the magnetic field B is implicitly
treated as a pseudeovector. What this means is that B behaves as a vector
when undergoing rotation, but when undergoing reflection gains an additional
sign flip. B is written out in component form as B1e1 + B2e2 + B3e3, where
each component is perpendicular to the other two. By saying that we will be
keeping track of components using the directions tangent to the surface, what
we mean is that instead of writing out B as before, we will instead be writing
it as B23e2 ∧ e3 +B13e1 ∧ e3 +B12e1 ∧ e2. This notation should bring to mind
the electromagnetic field tensor, Fµν , the components of which are the electric
field and the magnetic field. This is good, as it is this tensor that generalizes to
curved spacetime and beyond.3

Just as we can combine k-vectors to create vectors of higher rank, we can
also decompose k-vectors into the wedge product of lower rank vectors. A
paralellogram, for instance, can be decomposed into the two vectors that define
its sides. A cube can be decomposed into the three vectors that define the
vertex. And just so with a general infinitesimal parallelepiped. It follows that
we can express any k-vector as the wedge product of k 1-vectors. So, if we have
vk ∈ V k, we can decompose it as vk = a1 ∧ a2 ∧ a3 ∧ ... ∧ ak, where each of the

3Another issue with the cross product is that it requires that angles be defined, from which
come perpendicularity and the normal vector, and the reader may have noticed that we have
not yet given any notion of angles. Defining angles requires geometric notions that we have
not defined, and are in fact not necessary for our purposes. This speaks to the generality
of the tools we are using, as in most introductory physics topics, such as classical mechanics
and electromagnetism, the fact that you have angles and distances is considered a given, and
almost fundamental. As we have seen so far, they clearly are not.
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component vectors is in V 1. More concisely, this can be written in a product
series form as ∧ki=1a

i. Decomposing k-vectors as we pass them to k-forms, we
can write ωk(vk) = ωk(a1 ∧ a2 ∧ a3 ∧ ... ∧ ak) = ωk(∧ki=1a

i). Flipping the order
of any of these products will introduce a minus in the overall product. We
can make the wedge product on vectors redundant by imposing its condition
of antisymmetry on the k-form itself, and writing the k 1-vectors in a list of
arguments as ωk(a1 ∧ a2 ∧ a3 ∧ ... ∧ ak) = ωk(a1, a2, ..., ak). Thus, we say that
a k-form is an alternating function of k 1-vectors.

Proposition 2.14. K-forms are alternating functions of k 1-vectors, meaning
that if vk = a1∧a2∧a3∧...ai∧aj ...∧ak, then ωk(vk) = ωk(a1, a2, a3, ..., ai, aj , ..., ak) =
−ωk(a1, a2, a3, ..., aj , ai, ..., ak).

Similar to our ability to construct k-vectors out of lower rank vectors, we
can construct k-forms out of lower rank forms. In other words, we can construct
a “volume” form out of “area” forms. We define the wedge product on forms
as the tool that combines forms.

Definition 2.15. The wedge product on forms Ωi × Ωj → Ωk generates k-
forms such that if ωi∧ωj = ωk, and vi∧vj = vk, then ωk(vk) = ωi(v

i)∧ωj(vj).

2.5 Coordinates and Components

Up until this point in our discussion of k-forms and k-vectors, we’ve remained
in a general coordinate-free form. For a conceptual understanding of the tools
in use, this is just fine, and is in fact preferable. It shows that the math up until
this point is “universal,” and can be applied to any frame of reference without
sacrificing scientific validity. Furthermore, it should be noted that nature itself
is coordinate-free. The universe doesn’t come prepackaged with coordinates,
rather they are something that humans have created to streamline scientific
investigation. The caveat to this is that while coordinate-free works well for
conceptual understanding, it isn’t all that useful for solving actual problems
in physics, which is the entire point. Therefore, in this section, we will begin
imposing coordinates on the systems we’re working with.

Recall now definitions 1.1 and 1.2, and say we have a point P on a manifold
X, and let dP be an infinitesimal segment starting at point P . At this moment,
the vector is coordinate-free. In some neighborhood of P there will be a co-
ordinate system defined that we can use to describe dP . Mathematically, this
relates to defining the coordinate system in terms of the basis, and assigning
dP directional components along each basis vector, the sum of which gives us
dP . So,

dP = dxi
∂P

∂xi
= dxiei, (2.16)

where ei is the ith basis vector, and dxi is the vector component along that
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basis.4 In other words, we can say that dx1e1 gives us an infinitesimal segment
along x1, dx2e2 along x2, and so on.

Definition 2.17. Given a coordinate system Q, the basis of V 1 is the set of
linearly independent directions along the coordinates such that any element in V 1

may be constructed using the basis vectors. In R3 using Cartesian coordinates,
the basis vectors are equivalently (e1, e2, e3), (x̂, ŷ, ẑ), (̂i, ĵ, k̂), among others. A
vector component is the displacement along a basis direction.

Basis vectors, because they are defined in terms of a coordinate system, are
not truly vectors. Instead, they are something that when summed with the
displacements in each direction, return the vector.

Forms will be dealt with in a similar way. Let ω be a covector and dP be a
vector. Then ω(dP ) is a linear function of the coordinate differences along dP .

Therefore we can write ω = ωi
∂xi

∂P = ωie
i where each ei is a basis covector, or

cobasis vector. Again, basis covectors aren’t truly covectors. Instead, they
are a direction that when given a vector return the component of the vector in
that direction.

Definition 2.18. Given a coordinate system Q, the cobasis of Ω1 is a set of
linearly independent covectors such that any element in Ω1 may be constructed
using the basis covectors. For a set of forms with underlying field R3, the cobasis
may be written as (e1, e2, e3). For vector dP and basis covector ei, eidP = dxi:
the vector component in the ei direction. A basis vector ei and basis covector ej

relate to each other as eie
j = δji

5.

Putting everything together now, for vector dP and k-form ω, ω(dP ) =
ωie

i(dxjej) = ωi(dx
j)(ei)ej = ωidx

jδij = ωidx
i. This is an interesting result: a

vector and covector together naturally simplify down to a linear combination of
infinitesimal segments.

We note now that we cannot always decompose k-forms into constituent 1-
forms, but we can always express a k-form in terms of the basis covectors. So,
for any k-form ωk, we can write6

ωk = ωab...ce
a ∧ eb ∧ ... ∧ ec. (2.19)

And furthermore, we can always combine k-forms. So, if we have 1-forms α =
αie

i and β = βje
j , we can construct a 2-form as α ∧ β = αiβje

i ∧ ej . Simply
put, k-forms are always combinable, but not always factorizable.7

Working in a space with specified coordinates allows us to solve real prob-
lems. For instance, in section 2.2 we got slightly ahead of ourselves by describing
the oscillation of a mass on a spring with specific coordinates without yet having
them defined. Now, with the tools in this section, such a problem is possible to
solve.

4There is an implied sum over i here. That is,
∑n
i dx

iei = dxiei
5δij is the Kronecker delta, defined to equal 1 when i = j, and 0 otherwise
6In practice, ωab...c is a matrix defined on points
7This is similar to (and in fact, the math is exactly the same, involving the tensor product)

the fact that in quantum mechanics, states may always be combined, but not all mixed states
can be factored into constituent pure states
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2.6 Tensors and coordinate transformations

Nature does not come prepackaged with a specific, preferred coordinate system.
It follows then that any coordinate system that we choose to impose on our
system is ultimately changeable, and that our system can just as well be de-
scribed with any number of coordinate systems. For instance, if we say that
some object lies at point P with respect to coordinate system Q, we can just as
well say where it lies with respect to coordinate system Q̂.

So, suppose we have a covector ω = ωie
i, where the covector components ωi

and basis ei are defined relative to coordinate system Q. Suppose now we have
coordinate system Q̂, relative to which the components and basis are ω̂j ê

j . ω
is invariant, but the components and the basis are not, and their exact form
depends on the coordinate system we’re using. To transform between Q and Q̂,
we write

ω = ωie
i = ω̂j ê

j (2.20)

ωie
i = ωi

∂xi

∂P
= ωi

∂xi

∂x̂j
∂x̂j

∂xi
∂xi

∂P
= ωi

∂xi

∂x̂j
∂x̂j

∂P
= ωi

∂xi

∂x̂j
êj (2.21)

So,

ωi
∂xi

∂x̂j
êj = ω̂j ê

j (2.22)

=⇒ ∂xi

∂x̂j
ωi = ω̂j . (2.23)

Components of vectors transform in similar ways. If we have that v = viei,
then vi will transform as

v̂j = vi
∂x̂j

∂xi
(2.24)

In general, an object that has such a relationship with objects in other coordi-
nate systems is called a tensor.

Definition 2.25. A tensor X of rank [n k] is an object that transforms as

X̂a...k
b...n =

∂x̂a

∂xd
...
∂x̂k

∂xj
∂xc

∂x̂b
...
∂xe

∂x̂n
Xd...j
c...e . (2.26)

Corollary 2.27. A tensor of rank [0 k] is a k-vector, and a tensor of rank [k
0] is a k-form.

Corollary 2.28. If a tensor X = 0 in coordinate system Q, then X ′ = 0 in any
other coordinate system Q′. This follows immediately from the transformation
rules.
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Another way of thinking of tensors that may mesh better with a mathemati-
cian’s way of thinking is given in other treatments of differential geometry in
physics (such as Wald’s “General Relativity”). There, tensors are defined fore-
most as multilinear mappings onto R. That is, our defining feature of k-forms
and covectors is used as the definition of tensors in general. What this means
is that just as we can define ωk ∈ Ωk : V k → R as a function on k-vectors, we
can define vk ∈ V k : Ωk → R as a function on k-forms. In other words, k-forms
are functions that take k-vectors to R, and k-vectors are functions that take
k-forms to R.

Definition 2.29. A tensor T of rank [k n] T : Ωk × V n → R is a multilinear
map that takes a k-form (or k 1-forms) and an n-vector (or n 1-vectors) to R.

From a mathematical perspective, this is entirely valid, and does not de-
tract from solving problems in physics. Furthermore, it has the added bonus
of emphasizing that k-forms and k-vectors are in a sense two sides of the same
coin8, neither occupying a preferred position as the operator or as the object
being operated on. From a physical perspective, however, this has somewhat
unfortunate implications. Recall that we motivated the discussion of covectors
using force, and of vectors using infinitesimal displacement. Mathematically,
we would be entirely within our rights to say that an infinitesimal displacement
is a function on a force that produces work, rather than saying that the force
is a function on an infinitesimal displacement that produces work. This is not
as physically intuitive, so we will be continuing to be emphasizing covectors
and k-forms as being functions of vectors and k-vectors, while also using the
transformation law as the defining characteristic of tensors.

2.7 Exterior Derivative and Stokes’ Theorem

Recall the fluid flux example in section 1.3. We had a 3-surface τ placed in a
fluid, and the net flow of fluid through tau was given by Φ(∂τ) = ðΦ(τ) for flux
2-functional Φ. Suppose now that Φ has an associated 2-form B. We can define
a similar construction on forms. So, we have that

ðΦ(τ) = Φ(∂τ) =

∫
∂τ

B(d∂τ) (2.30)

Explicitly, we have that the 2-form B is acting on the infinitesimal compo-
nents of the boundary of 3-surface τ . We can equate this with a 3-form C acting
on the entirety of τ :

ðΦ(τ) =

∫
τ

C(dτ) (2.31)

8Properly speaking, k-forms and k-vectors are dual to each other
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We can relate B and C by defining the exterior derivative ð on forms,
such that C = ðB. Thus, ∫

∂τ

B(d∂τ) =

∫
τ

ðB(dτ). (2.32)

Definition 2.33. Let f be a k-functional with associated k-form ω, and let g be
a (k+1)-functional with associated (k+1)-form γ such that g = ðf . We define
the exterior derivative9 ð : Ωk → Ωk+1 such that ðω = γ.

Fk+1 Ωk+1

Fk Ωk

ð

∫
ð∫

Corollary 2.34. Stokes’ Theorem: For (k-1)-form ω and k-surface σ,
∫
∂σ
ω =∫

σ
ðω.

In many treatments of Electromagnetism (for example, “Classical Electro-
magnetic Radiation” by Heald and Marion), Stokes’ Theorem is given in terms
of the curl as ∫

S

∇× ~A · d~S =

∮
Γ

~A · d~l. (2.35)

This allows us to take a brief digression to see how the tools we have defined
look in the more familiar 3D cases.

We want to examine now how the exterior derivative explicity affects k-forms
when written out in component form. In general, we have that for ωk ∈ Ωk,

ωk = ωab...ce
a ∧ eb ∧ ... ∧ ec. (2.36)

It must be that an integral over the exterior derivative of a form results in one
of the degrees of freedom being integrated away, putting the integral strictly on
the boundary of the k-surface.

ðωk = ∂aωbc...de
a ∧ eb ∧ ec ∧ ... ∧ ed. (2.37)

So, suppose we have f ∈ Ω0, v ∈ Ω1, and B ∈ Ω2, and we apply the exterior
derivative to each of them. We have that

ðf = ∂afe
a, (2.38)

ðv = ∂avbe
a ∧ eb, (2.39)

9In most texts on the subject (cf. Curtis and Miller, “Differential Manifolds and Theoretical
Physics”), the exterior derivative is denoted simply with a d
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and

ðB = ∂aBbce
a ∧ eb ∧ ec. (2.40)

By looking closer at these expressions, we see familiar tools from vector
calculus arise. ∂afe

a is a 1-form consisting of the sum of derivatives in each of
the basis directions. In the 3D case, we have that

∂afe
a =

∂f

∂x1
e1 +

∂f

∂x2
e2 +

∂f

∂x3
e3. (2.41)

This is simply the gradient of a scalar functional. So, we have that in R3,

∂afe
a = ∇f. (2.42)

Similarly, we see that in 3D, ðv will give us a 2-form from a 1-form, composed
of the sum of derivatives in the directions perpendicular to the original 1-form.
That is, in R3,

ðv = ∂avbe
a ∧ eb = (

∂v2

∂x3
− ∂v3

∂x2
)e2 ∧ e3 − (

∂v1

∂x3
− ∂v3

∂x1
)e1 ∧ e3 + (

∂v1

∂x2
− ∂v2

∂x1
)e1 ∧ e2.

(2.43)

Similarly, we find that

ðB = ∂aBbce
a ∧ eb ∧ ec = (

∂B1

∂x1
+
∂B2

∂x2
+
∂B3

∂x3
)e1 ∧ e2 ∧ e3. (2.44)

We see here that ðv doesn’t quite give us ∇ × v, and ðB doesn’t quite give
us ∇ · B. This discrepancy demonstrates the difference between the wedge
product and the cross product. Had we done ∇× v, the first term would have
been ( ∂v2∂x3 − ∂v3

∂x2 )e1. That is, in the direction perpendicular to e2 ∧ e3. This is
similarly true for the components in e1 ∧ e3 and e1 ∧ e2. Furthermore, ∇ · B
returns a scalar10 (i.e., no direction), while ðB returns a volume in the e1∧e2∧e3

“direction.” This discrepancy is resolved by the introduction of the Hodge Dual
Operator ∗, such that ∗ðv = ∇×v and ∗ðB = ∇·B, but this is beyond us at the
moment. What does hold immediately true is a generalization of the expression

∇×∇V = 0 (2.45)

for any scalar function V . For any form ωk ∈ Ωk, we have that

ððωk = 0. (2.46)

You may be asking now, “But what about ∇×∇×B for B ∈ Ω1? This gives
us ∇(∇ · B)−∇2B, which certainly isn’t zero in general. Didn’t we show just

10Note however that ∇ · B doesn’t even return a true scalar. Rather, it returns a pseu-
doscalar: ρ

ε0
if B is an electric field. The difference here is similar to the difference between

vector and pseudovector: if you flip one of the coordinates, you get an extra minus sign in a
pseudoscalar, but a scalar is left invariant. Pseudovectors are associated with surfaces, and
pseudoscalars are associated with volumes (hence, charge density ρ.)
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that curl is really just the exterior derivative of a one-form?” The issue is, once
again, that the exterior derivative of a one form isn’t quite the same thing as a
curl of a vector field. This discrepancy arises because of the difference between
the wedge product ∧ and the cross product ×. For two vectors a and b, a × b
gives a vector perpendicular to the two of them, while the wedge product deals
only with the two original tangent vectors.

With these new, more general geometric expressions for gradient, curl, and
divergence, their physical interpretations become immediately clear, simply from
the notation. If we extend the flux example, we see that the gradient of a 0-form
is simply the lengthwise flow in each possible dimension (three, in 3D), the curl
of a 1-form is the planewise flow in each plane (still 3, in 3D), and the divergence
of a 2-form is the flow outwards from a point per unit volume.

2.8 Closed and Exact Forms, and Potentials

In our discussions of work functionals in Chapter 1, there naturally arose a
relationship between functionals on boundaries and path independent work. We
can expand on this relationship now by making use of forms and the exterior
derivative. Recall that if we have a path-independent work functional W ∈ F1,
then for any closed line λ ∈ S1, the work done will be zero. Furthermore, we
said that if W is a path-independent functional, then it admits a potential V
such that W = ðV . So, we had that

W (λ) = ðV (λ) = V (∂λ) = V (∅) = 0. (2.47)

We can start working infinitesimally now. Suppose W has an associated
1-form f , and V a 0-form α. We have therefore that W =

∫
f , and V =

∫
α.

So, because W = ðV , we have that f = ðα. We call f an exact functional, since
it’s the exterior derivative of another form.

Definition 2.48. A k-form ω is exact if there exists a (k-1)-form α such that
ω = ðα. We call α the potential of ω.

We also found before that any boundary functional’s boundary functional is
the zero functional. So, if W = ðV , then ðW = ððV = ∅, which will return
zero when given any surface. Similarly, we showed in the previous section that
applying the exterior derivative twice returns zero. Therefore, if f = ðα, then
ðf = ððα = 0. So, ðf = 0. We call a form whose exterior derivative is zero a
closed form.

Definition 2.49. A k-form ω is closed if ðω = 0.

The fact that f was exact necessarily led to the fact that f is also closed.

Proposition 2.50. All exact forms are also closed forms.

But the converse is not necessarily true. Say we have a 1-form A such that
A = −y

x2+y2 e
x + x

x2+y2 e
y. The exterior derivative of this form is zero, but it
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is not the exterior derivative of any other form. This can be plainly seen by
calculating the integral of the form around a closed path, and not getting zero.
There is also a discontinuity at the point (x, y) = (0, 0). In the language of
vector calculus, this is a divergenceless field (meaning that there is no “sink”),
like the magnetic field, or the vector potential in the Coulomb gauge.

Proposition 2.51. Not all closed forms are exact.

Closed forms correspond to functionals that are zero on contractable closed
surfaces. Because of this, a region may be constructed such that the closed form
is locally exact. The only requirement to this region is that it does not include
the discontinuity (the origin, in the case of A). Therefore, a potential exists in
that local region. Thus, a force may be locally conservative, even if it is not
globally conservative.



Conclusion

Through what we’ve done here, we’ve shown that when properly motivated,
more esoteric mathematical tools follow quickly from the more immediately
familiar and concrete. This was based around starting from finite objects and
functionals, which are easily grasped from a physical sense, and from a judicious
application of assumptions, deriving more abstract tools for physics.

The point of this is that, mathematically speaking, a great deal of what we
do in physics is broken up into discrete conceptual chunks, but doesn’t have to
be. Electromagnetism is introduced with gradient, divergence, and curl, though
these tools do not generalize into higher dimensions. K-forms can be combined
arbitrarily, in the same way that states in Quantum Mechanics can be through
the tensor product, and for the same reason both may not be arbitrarily decom-
posed. And observations and measurements may be considered as functionals
over surfaces. Yet, these divisions between mathematical concepts need not be
done, and the similarities need not be coincidental. By combining the thought
process under one consistent umbrella of math, and thereby simplifying it, the
math used in physics doesn’t have to be so esoteric, and is in fact quite trans-
parent.

There are, naturally, certain topics that we would have liked to cover, but
were not able to, though they would have definitely led to interesting results. We
would have, for instance, wished to bridge the gap into formal geometry through
the introduction of the metric tensor and symplectic form. The former would
have allowed us to define length (purposefully excluded from the discussion of k-
functionals) and angles. The latter would have allowed a discussion of densities
and areas, as well as an introduction into Hamiltonian mechanics. Furthermore,
an aspect that remains unclear to us is a consistent concept of orientation. Is it
based on manifolds being orientable, and so perhaps requiring perpendicularity,
and therefore the metric tensor, or is it a “direction” of integration of k-forms
over k-vectors? These, and many other topics, remain open avenues for study.
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