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Abstract

This work is a re-derivation of Hamiltonian Mechanics from two assumptions about a classical system.
Through this derivation we work to better understand the nature of classical systems and eliminate some
of the misconceptions surrounding the relationship between classical theories.
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1 Introduction

The main purpose of this work is to re-derive Hamiltonian Mechanics from base assumptions at an ap-
proachable level. Through this derivation it also seeks to eliminate the misconceptions that plague current
instructional literature and motivate a more thoughtful understanding of the subject.

Historically the basis for the laws of physics were generalized experiences. These laws were rooted in
the physical world rather than a mathematical one. As it is treated now, Hamiltonian Mechanics lacks this
physicality. It is taught as a mathematical reformulation of Newtonian Mechanics rather than its own physical
theory. Many popular mechanics textbooks contain passages like this from Thorton and Marion’s Classical
Mechanics of Particles and Systems: “... we need not formulate a new theory of mechanics–the Newtonian
theory is quite correct–but only devise an alternate method of dealing with complicated problems.”[1] This
assumption of an equivalence between Newtonian and Hamiltonian mechanics is a misconception.

Another more egregious example of this kind of hand waving can be found in Douglas A. Davis’s Classical
Mechanics “Therefore, it is quite worthwhile to spend some considerable effort in reformulating the ideas
held in Newtonian mechanics so we can solve otherwise intractable problems. Remember, this is only a
reformulation so, as we have done before, we shall check the results by applying them to already familiar
examples. There is no new information or new areas of validity. We will simply restate Newtonian mechanics
in another form.”[2] This not only equivocates these two theories, but also asserts that Hamiltonian mechanics
is only valid for systems in which Newtonian Mechanics is valid. This is not the case.

Understanding when a theory applies is a critical part of Physics. Hamiltonian Mechanics describes the
dynamics of a system by assuming that energy is conserved; we will call this assumption Deterministic and
Reversible Evolution later on. Newtonian Mechanics relates the dynamics of a system to its kinematics; this
assumption of a bijection between the kinematics and the dynamics is called Kinematic Equivalence.1 These
two different assumptions mean different physical theories are applicable to different systems.

For example consider two systems suspended in a viscous fluid. In the first system the observer is at rest
and a particle is moving toward them as it decelerates. In the other system the particle is at rest while the
observer is moving toward it while decelerating. Kinematically these systems are identical to the observer,
but their dynamics are fundamentally different.

Hamiltonian Mechanics cannot accurately treat the first system as energy is not conserved. Take this as
a fact for now; we will see why Hamiltonian Mechanics cannot describe dissipative systems later. Meanwhile,
Newtonian Mechanics cannot describe our second system as we are working in a non-inertial frame and as
such will observe fictitious forces; there is not an invertible map between the dynamics and the kinematics.
Evidently these two formalisms are not equivalent; in fact, the relationship between our three favorite classical
theories is best described by Figure 1.

The Classical Picture

Hamiltonian Newtonian

Lagrangian

Figure 1: Venn diagram showing the relationship between our three favorite classical theories.

Now that we have motivated our approach, we will begin the derivation with basic physical assumptions
about a system in order to show it obeys Hamiltonian Mechanics with a more physical justification. We will

1For clarity a system’s dynamics describe how it moves in phase space while its kinematics describe how it moves in physical
spacetime.
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start with these physical assumptions, then translate those assumptions into precise mathematical definitions.
This will lead us to our results.

2 Infinitesimal Reducibility

Assumption I (Infinitesimal reducibility). The state of the system is reducible to the state of its infinitesimal
parts. That is, giving the state of the whole system is equivalent to giving the state of its parts, which in
turn is equivalent to giving the state of its subparts and so on. This relationship holds the the other way as
well. Giving the states of the smallest subdivisions of the system is equivalent to giving the state of the whole
system.

What does it mean physically for a system to be reducible? This first assumption that underlies classical
mechanics prescribes how a system can be broken down into its component parts. This assumption will
provide us with a mathematical framework to describe the state of the system we are investigating.

Let’s consider a ball that we throw through the air. This ball will follow some path. We assume we
can fully describe the state of the ball by its motion through the air. Now, suppose we draw a red dot on
this ball. Then if we fully describe the motion of the ball, we have also equivalently described the motion
of the red dot. The ball is a reducible system meaning knowledge of the state of the whole is equivalent to
knowledge of the states of the parts. The internal dynamics of the system are accessible meaning we can
know the states of the parts of the system given knowledge of the state of the whole. Additionally if we give
the motion of all possible red dots on the surface of the ball, we know the motion of the whole ball. The
state of the whole system can be known from the states of its parts.

Each state of the whole system is uniquely determined by the states of its parts, meaning that given the
state of all parts, we can determine exactly the state of the whole system. Two identical systems are in the
same state if and only if all of their parts are in the same states. The same is true the other way around.
The states of the parts of the system are uniquely determined by the state of the whole. Thus we have an
invertible, bijective map between the state of our whole system and the states of its parts. In our example,
this means that there is exactly one path traveled by the red dot per distinct state of the whole ball. So
if we throw the ball with no angular velocity, the red dot will travel a parabola through the air. We could
then throw the ball with the same linear velocity so that its center of mass travels the same path as before,
but if the ball is spinning we have a different path traveled by the red dot. So from two distinct states of
the overall system, one with angular velocity one without, we find two distinct sets of states of the parts of
the system. One spiraling trajectory and one parabola.

We have described reducibility in general, but what does it mean to be infinitesimally reducible? If a
system is infinitesimally reducible we can subdivide it as many times as we want and the smallest subdivisions
will still be themselves reducible. If we imagine that we divide our system until we approach the limit of this
subdivision we will arrive at a collection of infinitesimally small parts of the system; we call these smallest
subdivisions classical particles.

What does this mean physically? Continuing our previous example, imagine we cover the surface of the
ball in red dots. We then remove these dots and replace each of them with a number of smaller dots. We
repeat this process until the radius of the dots is approaching zero. Because the ball is assumed to be a
reducible system, given the state of the whole ball, we know the states of all of the red dots drawn on it. It
is important to note that the dots do not ever become points. They always have radii that are greater than
zero. No dot is a point particle, rather they are infinitesimally small subdivisions. We can always divide
them again. Assuming a system to be infinitesimally reducible means that given the state of the whole
system, we can describe the states of all the infinitesimally small parts of the system. Now we must codify
this idea formally.

Let’s start with a discrete system as it is conceptually simpler. Consider a box with a fixed number of
balls of varying colors as our system.2 Suppose the state of the whole system is determined by the number
of balls of each color. We will define the state space of the balls as S which spans all possible colors a ball
can be. Each ball is at a point s ∈ S corresponding to its color. We call the state space of our whole system
C which spans all possible color combinations of the balls. One state of the whole system is a point c ∈ C.
For a state c ∈ C we can define the number of balls in the box of each color as a distribution, ρ, over the state
space S of the balls. This distribution is unique to each state of the whole system. Two identical systems
are in the same state if and only if their distributions are equivalent. For each distinct state c ∈ C of the
whole system, we have exactly one ρ.

2This is not an example of an infinitesimally reducible system as the balls are the limit of its reducibility, but it serves as an
illustrative example.
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Figure 2: Two different states of the whole system map to two different distributions of the parts of the
system over S. Functions are not normalized.

For each subset U of S, we can count the number of balls that are those colors; call this counting function
µ ∶ S → R. That is, for each U ⊆ S we have

µ(U) = ∑s∈U ρ(s)
∑s∈S ρ(s)

.

This function is normalized by definition because µ(S) = 1.
If our system is continuous the main ideas above hold, but we must make two changes to the formalization.

First, our distribution ρ ∶ S → R becomes a continuous function that describes of states over the space and
second, µ becomes an integral:

µ(U) = ∫U
ρ(s)dS

∫S ρ(s)dS
where dS gives the number of states in an infinitesimal area. We will drop the denominator from now on
unless it is necessary for notation’s sake but keep in mind this normalization is implicit. See Figures 2 and
3 for a visual representation of this phase space and counting function.

For a physical example let’s consider a classical gas distributed in a volume. The state of the whole is
the distribution. Now we can see that our counting function will count the amount of gas in a region of this
volume by integrating the density over the region in question.

Definition 1. Let C be the state space of a system. The system is infinitesimally reducible to the
infinitesimal parts (i.e. particles) identified by the state space S if there exists a measure dS such that for
every state of the whole system c ∈ C there exists ρ ∶ S → R such that for every U ⊆ S the counting function
µ(U) corresponds to the fraction of the system found within those states; as usual this definition means
µ(S) = 1.

2.1 Constraint on Coordinate Transformations

If we want to further describe the state of the system we need to identify our states in S with numbers so
that all states are uniquely labeled. This system of labeling will give us our state variables. For example
imagine an ideal gas in a box. We know that we can describe the state of this gas by giving its pressure,
temperature, or volume. By giving two of these quantities we have completely described the state of the gas
as the third can be ascertained from knowledge of the other two through the ideal gas law. The state of the
gas is uniquely determined by the values of two quantities. Thus we have a one to one map from the state
space to the values of a set of numerical quantities. There is a precise number of state variables for every
system. From our ideal gas example if we were to also include the third quantity we would have introduced
a redundant label. For each pressure-volume pair there is exactly one possible temperature so if we include
temperature in our labeling we no longer have a one to one map between the state space and sets of values as
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Figure 3: One dimensional continuous example of our counting function µ(U). U is a region of phase space
and µ(U) is the fraction of the system that is found in this region.

some triplets do not correspond to possible states. For each state there is one well defined pressure-volume
pair.

Definition 2. A state variable assigns one numerical quantity to each state. Formally, it is a map ξ ∶ S → R.3
A complete set of state variables fully identifies a state. Formally, it is an invertible map ξa ∶ S → Rn. This
gives us a state space that is locally isomorphic to Rn thus our state space is an n-dimensional manifold.

Expressing ρ in terms of our new state variables is the next natural step. Consider a cannon ball that
is shot through the air. If the ball is spinning the position and momentum of each infinitesimal region of
the ball will vary. Let the position and momentum be our state variables. The parts of the system will be
distributed across these positions and momenta. Writing our distribution in terms of these variables will
give us a density. We want ρ to be a map ρ(ξa) ∶ Rn → R. When we defined our state variables we noted
they created an invertible map between states and numbers labeling those states. Using this we see ρ(ξa) is
simply our distribution function ρ(s) composed with the inverse of ξa ∶ S → Rn. That is:

ρ(ξa) = ρ(s(ξa)).
This density is a map from our state variables to a numerical value that describes how much of the system
occupies a region on this manifold.

Note that the density and the distribution are distinct functions that describe the same thing; specifically
the distribution is ρ(s) ∶ S → R and the density is a composition of the distribution function with the state
variables i.e. ρ(ξa) ∶ Rn → R. The density requires labeling the space with state variables to be defined while
the distribution does not.4

Under a change of state variables ρ(ξa) must have a well defined transformation rule. For example say
we have the density as a function of x and y. Then if we change to polar coordinates we now want ρ(r, θ).
How do we find ρ(r, θ) in terms of ρ(x, y)? With a little thought we can write

ρ(x, y) = ρ(r, θ) ∣
∂r
∂x

∂r
∂y

∂θ
∂x

∂θ
∂y

∣ .

Evidently these partial derivatives need to be defined to have a well defined transformation of ρ. More
generally our transformation rule is of the form

ρ(ξa) = ρ(ξ̂b) ∣ ∂ξ̂
b

∂ξa
∣ .

3Note this S indicates a subspace of the particle state space S. Each ξ maps a subspace S ≤ S to R.
4Note that we will use ξa, ξb, ξc for state variables; qi, qj , qk for unit variables; ξα, ξβ , ξγ for state variables that include time

(e.g. four momentum). For distributions/densities we use ρ; where we need to distinguish between the two we will use ρ(s) for
the distribution and ρ(ξa) for the density. States are indicated with s and state variables with ξ. Note the duplicity of ρ, s,
and ξ. We use ξa(s) as S → Rn; s(ξa) as Rn → S. Thus we have the following identities: ρ(s(ξa)) = ρ(ξa); ρ(s) = ρ(s(ξa(s))).
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In our example above we do have one point at which the transformation is not well defined: the origin.
We do not have well defined partial derivatives at the origin as theta is not well defined at that point. Thus
our density is not well defined at the origin in polar coordinates.

We will require that any state variables labeling our state space be differentiable over all of S. This
ensures we can define a change of variables without introducing points in S where our density is not well
defined. So our state space will be a manifold labeled by differentiable state variables.

Proposition 3. The state space of our classical particles S is an n-dimensional differentiable manifold.

As we saw above, the density ρ(ξa) will be affected by the labeling of our state space. We also know
that our distribution, ρ(s) should be independent of our choice of state variables; the way the system is
distributed over the state space does not change even if we choose new state variables to label the space.
This will give us an additional consideration when thinking about how ρ transforms.

Consider an example using temperature. We can give the temperature at a point in space without a
coordinate system. Take a point A in three-dimensional space. There is no need for a conception of any
other unit to define the temperature. Formally this means we can write T (A) ∶M → R. This is a direct
map from spacetime to a number; we do not need to label spacetime using a coordinate system. This
independence also means logically that changing our coordinate system does not change the numerical value
of temperature at a point nor its units. We can write T (A) = T (x, y) = T (r, θ) meaning that as long as
the point we are discussing remains the same, the value of T is the same. So temperature is coordinate
independent and invariant under change of coordinates.5

We know that the amount of a system occupying a region of state space does not change with the variables
we use to label that space. Our distribution ρ(s) is coordinate independent thus it is unaffected by the choice
of state variables ξa. We want this to translate to our density ρ(ξa) because the distribution and the density
represent the same thing: how the system is distributed over state space. This means that under a change

of state variables density will be invariant i.e. ρ(s(ξa)) = ρ(s(ξ̂b)).
We have found two seemingly contradictory transformation rules for our density ρ(ξa). On one hand, ρ

must transform as a density i.e. its value will vary under a change of variables; on the other hand ρ must
be invariant under a change of variables because it should match the distribution. We solve this issue by
restricting which state variables we use to label our state space. We will throw out any choice of variables
that do not produce a ρ that obeys both of these restrictions.

Proposition 4. Because it is a density and is coordinate invariant, ρ will transform as a scalar and a

density under a change of state variables ξ̂b = ξ̂b(ξa). Thus ρ(ξa) = ρ(ξ̂b) ∣ ∂ξ̂
b

∂ξa
∣ and ρ(s(ξa)) = ρ(s(ξ̂b)).

The state variables that allow ρ to be expressed in a way that satisfies these conditions are called canonical
variables.

Using these two conditions together we have that ∣ ∂ξ̂
b

∂ξa
∣ = 1. Using our counting function let us see if we

can make a little more sense of this physically.
We can write our counting function µ(U) in terms of our state variables as µ(U) = ∫ξ(U) ρ(ξa)∏a dξ

a. If

we change our state variables we know that that fraction of the system in a region U ⊆ S will not change.

Thus µ(U) must be invariant under such a change. Let ξ̂b = ξ̂b(ξa) be our change of variables. This gives us

µ(U) = ∫
ξ(U)

ρ(ξa)∏
a

dξa = ∫
ξ̂(U)

ρ(ξ̂b)∏
b

dξ̂b.

In more concrete terms we know that to find the total mass in a region U from a density we write the integral

∫
U
dm = ∫

U
ρmdV.

If we want to conserve the value of this integral under a change of variables we know that if ρm changes,
the value of dV must change accordingly. Proposition 4 however, tells us that the value of ρ cannot change,
thus we know the value of our ’volume’ element dξa cannot change either. Great! This is exactly what
proposition 4 tells us.

Proposition 5. The state space S must admit canonical state variables. A change of state variables must

be differentiable and must have a unitary Jacobian i.e. ∣ ∂ξ̂
b

∂ξa
∣ = 1. Such a transformation is a canonical

transformation.
5We say a quantity is coordinate independent if it can be defined without a coordinate system. To be coordinate invariant

means it will not change under a change of coordinates.

8



Symbol Name Description

C State Space of Whole Sys-
tem

Contains all possible states of the whole system. Each state
c maps to a unique distribution ρ(s)

S State Space of Classical
Particles

Contains all possible states of the parts of the system. Par-
ticles are distributed according to ρ(s).

M Space-Time Physical spacetime.

ρ(s) Distribution of States S → R

ρ(ξa) Density of States Rn → R

µ(U) Counting function P(S)→ R

ξa State variables S → Rn

ρ(ξa) Density Rn → R

ξ̂b(ξa) Change of Variables Rn → Rn

2.2 Unit Variables, Conjugate Pairs, and 2n Dimensional State Space

We know that to define a density we need some kind of units of area or volume. We must remember that
we are working with physical systems here. This means that the units of our state variables are important.
Some of our state variables will define a unit and others will have their units derived from the units of other
state variables. For example if distance in a direction is defined in terms of meters and time is defined in
terms of seconds, velocity in that direction must be defined in meters per second and acceleration must be of
units of meters per second squared. The units of velocity and acceleration are derived from the definition of
the units of distance and time. Changing the definition of a fundamental unit will also change the definitions
of all the units derived from it.

Another example of this relationship between variables and their units is the set energy, entropy, and
temperature. If we define the units of energy and entropy, we have no choice in the units of temperature
because the relation TdS = dU → T = dU

dS
ensures that the units of temperature are equivalent to the units of

energy divided by the units of entropy. We could just as easily define the units of energy and temperature
which would give us the units of entropy through the same relation.

We will define a unit system using a subset of our state variables which we will call our unit variables.
These unit variables will define the fundamental units underlying all other state variables. Changing these
unit variables will induce a change in all of the other state variables that rely on the definition of that unit.
Take our distance, velocity, and acceleration example; if we change the units of distance from meters to
light years, our definitions of velocity and acceleration must change as well, but our units of time remain
unchanged. Conversely if we change our units of time, the units of velocity and acceleration will still change,
but our unit of distance is unaffected. Unit variables are independent of one another. Ostensibly, the
definitions of temperature and time have nothing to do with one another. Generalizing this fact we see that
if we change one unit variable we do not induce a change in any other unit variables. This change of units
must be unique given our knowledge that state variables are invertible bijections.

Definition 6. We define a unit variable q ∈ ξa as a state variable that is the definition of a unit. The
subset of unit variables qi ⊂ ξa defines a unit system upon which the other state variables depend meaning

that a transformation q̂j = q̂j(qi) induces a unique change of state variables ξ̂b = ξ̂b(ξa). Unit variables are
independent of one another.

Now we must ask how a change of unit variables should affect the units of our density ρ(ξa). Let’s
consider a typical example of a density: mass distributed over three dimensional spaceM. If I have a mass
distribution, and I ask you how much mass is there in a region U ⊆M, your answer would be a number
followed by a unit. This response would be coordinate independent as the definition of the region U does
not require a coordinate system; your answer depends only on the defined region of interest and the units
of mass; there is no dependence on the choice of coordinates used to describe the space. We can talk about
points in this space without a defined coordinate system. Take a point A ∈M; this is the same point in all
references, and we do not need to have a coordinate system defined to talk about point A. If I ask for the
mass density at that point, however, I need to specify a unit like m3 to describe volume. Formally, I have

9



to specify the unit system of the space. In math terms this means that the density function is defined as
ρm ∶ R3 → R not ρm ∶M → R just as we saw in the previous section. We cannot define a map directly from
M to R because without a well defined notion of distance, density makes no sense. If we were to change our
unit system to cm3 the actual numerical value of the density at each point changes. The change of units
labeling the space also means that the units of the density change as well. The unit system of the state
space will determine the units used to describe density. See Figure 4 for an explicit example.

As we saw in section 2.1 the Jacobian of a change of variables will give the transformation rule of the
density; the transformation rule for the units of the density will similarly be given by the units of the
Jacobian. But we also know that like our counting function µ(U), we want our density to be unaffected by
changes in our state variables in both its value and units. Because we will only use canonical state variables,
we have ensured that the Jacobian of a change of state variables will be unitary. This means that not only
will the value be equal to one, but also that it will be unitless. This ensures that like our counting function,
ρ will have the same units after a change of variables.
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Figure 4: Visualization of the how the units with which we label our space affect the density. Both areas
contain exactly .25kg uniformly distributed, but their density functions are different because their unit
systems are different.

Now we will examine formally this change of units. Let’s start with the simplest case: one unit variable
suffices to describe our unit system. We then can write our set of state variables as ξa = {q, kµ} where kµ

could represent any number of other state variables. Let’s suppose we perform an arbitrary change of units.
We then have q̂ = q̂(q). How must our set {kµ} change while upholding our restriction to a unitary Jacobian?
Our Jacobian block matrix will be of the form

1 = ∣ ∂ξ̂
b

∂ξa
∣ =
RRRRRRRRRRR

∂q̂
∂q

∂q̂
∂kµ

∂k̂ν

∂q
∂k̂ν

∂kµ

RRRRRRRRRRR
.

If there are no kµ variables then our constraint equation becomes ∣ ∂ξ̂
b

∂ξa
∣ = ∣∂q̂

∂q
∣ = 1. This does not allow us

to make an arbitrary change in units meaning this case is invalid. We must have one or more kµ variable(s).

Because q̂ has no dependence on kµ we know that ∣ ∂q̂
∂kµ ∣ = 0. This means that our constraint becomes

∣∂q̂
∂q
∣ ∣ ∂k̂ν

∂kµ ∣ = 1. We know that q̂ only depends on q so we can write (∣dq̂
dq
∣)−1 = ∣dq

dq̂
∣. We then get ∣ ∂k̂ν

∂kµ ∣ = ∣dqdq̂ ∣ . This
provides only one constraint on our transformation. We know that we must have a unique transformation.
So if we have two or more kµ variables we cannot say that q fully defines the unit system for all other state
variables as a change in q does not induce a unique change in the other state variables as it should. Thus
we must have exactly one k variable and our manifold will be two dimensional. This k variable is called a
conjugate variable.

What are the units of the conjugate variable k? Recall the earlier equality ∣dq̂
dq
∣ ∣∂k̂

∂k
∣ = 1. It is important

that we know this equality gives us a unitless quantity. This means we can relate the units of k to the units
of q. We determined earlier that k is a function only of q and as such the units of k written as [k] must only
be a function of the units of q. Rearranging the earlier equality gives us

∣dq̂
dq
∣ = ∣∂k

∂k̂
∣ .
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This means we will write the units of k as [k] = 1
[q]

.

How does this generalize to higher dimensions? Let’s consider a state space whose unit system is described
by {qi}ni=1 where each qi is an independent unit variable. This means that a change in one of the unit
variables will not affect the other unit variables and that this change will be a function only of the original
unit variable. Now we will perform individual changes of unit variables. We will write the first of these
changes as q̂1(q1) = q̂1. Writing out the resulting change of units explicitly:

{q̂j}nj=1 = {q̂1(q1), q2, ..., qn}.

Because we are fixing all of the {qi}ni=2 variables, this case is the same as the one unit variable system. This
means that we will find precisely one conjugate k1 variable that corresponds to q1 whose units are the inverse
of those of q1. Continuing this process we see that the set of state variables must be given by {qi, ki}ni=1 and
that we must have a 2n dimension manifold.

Proposition 7. The state space of the particles is 2n dimensional. The state variables are organized in pairs
{qi, ki} where the set {qn} defines the unit system. These state variables have a well defined transformation
rule with a unitary Jacobian.

Proposition 8. The units of conjugate variables {ki} are the inverse of the units of the corresponding unit
variables {qi}. The volume element dξa = dξ2n = dqn ∧ dkn is invariant in value and units under a canonical
change of variables.

We have now successfully described the structure of phase space by making one assumption about our
system. The next section will elaborate on this structure and discuss the units we use to count states before
we move on to our second assumption.

2.3 Degrees of Freedom, Areas in State Space, and Poisson Brackets

We showed in section 2.1 that the volume element expressed in canonical variables ∏a dξ
a = dξ1dξ2 . . . dξ2n

is invariant under a canonical transformation. We want to relate this differential to our measure dS. How do
the variables with which we label our state space relate to the number of possible states in that space? This
requires a few considerations. What units will we use to count these states? The convention in statistical
and quantum mechanics is to use h̵ as the units of number of states; we will continue this convention. We
define the units of our measure dS to be h̵. We write p = h̵k in order to define a new conjugate variable p
that depends not only on the unit of q, but also on the units used to count states. Here we are exercising
our freedom to choose the units of the conjugate variables. We are giving p the units of number of states
over the units of q. This choice allows us to relate the state variables labeling the space to the number of
states contained in that space in a precise way.

In defining p this way we arrive at the relation dS =
n

∏
i=1

dqidpi. From section 2.2 we know that each

conjugate variable is a function of one and only one unit variable. This means that each individual pair of
{qi, pi} variables will chart a 2D surface in phase space that can be described independently of the other
state variables. We will call these pairings and the surfaces associated with them degrees of freedom (d.o.f.).

If we want to count the number of possible states over one d.o.f. we can integrate using the measure dSi.
The integral that gives the number of possible states in a region Ui of our surface is ∫Ui

dqidpi = ∫Ui
dSi.

Definition 9. A degree of freedom (d.o.f.) is a pair {qi, pi} such that dSi = dqidpi. The measure dSi

quantifies the number of possible configurations within an infinitesimal surface identified by that degree of
freedom.

How do we count states over multiple degrees of freedom? For example imagine we have a state space
of four dimensions where q1, q2 are positions along the x and y axes and p1, p2 are momenta along those
axes. The two pairings {q1, p1} and {q2, p2} are our degrees of freedom. We can count the total number of
possible states by first counting the possible configurations of position and momentum in each dimension
then multiplying these two counts together because the degrees of freedom are independent: the choice of
a configuration in one has no effect on the choice of a configuration in the other. Thus the surfaces are
orthogonal and the total number of possible states is given by the product of the possibilities in each degree
of freedom.

Definition 10. Two degrees of freedom are independent if the number of configurations identified by them
is the product of the configurations identified by the individual degrees of freedom. That is, dS = dS1dS2.
Since the volume is the product of the areas, independent degrees of freedom are orthogonal.

11



How do we determine if a pair of variables forms a degree of freedom? Not all variables are compatible
with each other. Consider our earlier example of 4D state space. We could not define the x-position and
y-momentum as a degree of freedom because a change of units of the x-position will not induce a change in
the units of y-momentum. To formalize this we will define an operator that tells us if two state variables are
compatible.6 This operator will take two state variables f, g and return 0 if the variables are not compatible
and do not form a d.o.f. or the unit change of the area dfdg/dS if they are. This operator is called a Poisson
bracket.

Definition 11. The Poisson bracket is defined as {f, g} = ∑i
∂f
∂qi

∂g
∂pi
− ∂g

∂qi
∂f
∂pi

.

Let’s suppose we have canonical variables such that each {qi, pi} form a degree of freedom. If f and g
are canonical variables that form the same d.o.f. as one of these pairs then the Poisson bracket of f and g
is {f, g} = dfdg/dSi. If not {f, g} = 0. We know that because our degrees of freedom are independent and
because we’ve limited ourselves to the use of differentiable state variables only, there will exist an invertible
transformation between f, g and qi, pi. If we recall that the Poisson bracket returns the unit change of area
dfdg/dSi, we see that the Jacobian of this transformation is precisely the Poisson bracket of f and g.

Proposition 12. The Poisson bracket {f, g} translates the densities of states into densities per unit area of
f, g. It is the Jacobian of the transformation dfdg → dqidpi i.e. dfdg = {f, g}dqidpi.

3 Deterministic and Reversible Evolution

Assumption II (Deterministic and Reversible Evolution). The system undergoes deterministic and re-
versible evolution meaning given the state of the system at any time, its state at all past and future times is
known.

We will now make an assumption about the time evolution of the system. The resulting mathematical
structure will describe this evolution in terms of our state variables.

For a system to undergo deterministic and reversible evolution there must be a bijection between all past
and future states of the classical particles that make up the composite system. We must also have that
the density of states, ρ, is conserved over time. Now this does not mean that our classical particles cannot
change state. It means that if we have a certain number of classical particles in a initial state, all of those
particles and no others will evolve together and end up in the same final state. For example, if half of the
system begins in state A and one of these particles is later found in state B then we know that exactly half
of the system is found in state B at that time.

Why must we have the additional requirement of the conservation of the density when it seems the
existence of the bijection would be sufficient for the evolution of our system to be deterministic and reversible?
Here is an example of a system for which we can write such a bijection, but for which the density of states is
not conserved. We will see that the condition of the bijection alone is not strong enough to provide us with
the desired mathematics.

Imagine we have a one dimensional damped harmonic oscillator. We have a one to one map from past
states to future states. But we also know that no matter the initial state, as the system evolves it will approach
its rest state because the oscillator is damped. Our state variables will be position and momentum. We
know that in the real world all measurements have finite precision. This informational granularity tells us
that at some point in the above example we will not be able to tell the difference between the state in which
the oscillator is barely moving and its rest state; a measurement will not be able to distinguish between the
two states, see Figure 5 for a visualization of this. Thinking of this in terms of our knowledge of the system
we see that as time progresses and our states collapse towards the rest state, we lose information about the
system. This means in reality our system is not reversible because once it passes a certain point we cannot
deduce the past state of the system from its current state; when the system is at rest we have no idea of its
initial condition. Thus the addition of the requirement that density be conserved over time is necessary to
ensure we can always deduce the past states of the system from its current state in a physically meaningful
way.

Definition 13. A deterministic and reversible system is one for which all particles in a state are mapped
to one and only one past or future state. That is, given a set of initial values ξα0 at a time t0, there is only
one possible evolution ξα(t), such that ξα(t0) = ξα0 . Moreover, ρ(ξα(t)) is a constant.

6This idea may feel familiar. That’s because the operator we will define is the classical equivalent of the quantum commutator.
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Figure 5: The evolution of a damped harmonic oscillator in phase space from 8 different initial conditions.
At some critical time tc we can no longer distinguish this system from the oscillator at rest given finite
precision of measurement.

We will continue to consider a system with a single degree of freedom and state variables {q, p}. If we
transport our 2D state space in time t, we can map the evolution of each classical particle in R3. The
evolution of the state of each particle can be written as ξα(t) and the fraction of the system that is found in
that state is ρ(ξα(t)). Note we are using ξα to denote the state variables in the extended phase space that
includes time i.e. ξα = {ξa, t}.

If we change infinitesimally in time we can write ξα(t+dt) = ξα+ dξα

dt
dt. We know that ξα(t) is differentiable

because ρ is always defined. We then will write a vector field Sα = dξα

dt
Ô⇒ S = (dq

dt
, dp
dt
, dt
dt
). This vector

field describes the time evolution of our state variables.
Thinking about our damped oscillator example, we see that the vector field S for this system will have a

nonzero divergence because the states of the classical particles starting from different initial conditions get
closer together as the system evolves towards its rest state as illustrated in Figure 5.

Instead applying the requirement that ρ(ξα(t)) be conserved in time, we see that the divergence of the
vector field must be zero:

∇ ⋅ S = ∂αSα = ∂Sq

∂q
+ ∂Sp

∂p
+ ∂St

∂t
= 0.

Note that this means that we can write our vector field S as the curl of a vector potential by the fundamental
theorem:

S = ∇× (−θ +∇f)
where θ is our vector potential and ∇f(q, p, t) is a gauge term. In component notation this equation is

Sα = ϵαβγ(∂β(θγ + ∂γf)).

We know that θ will not be unique because we can choose what gauge we work in.7 We will write theta as
θ = (θq, θp, θt) and choose our gauge such that θp = 0 by setting ∂f

∂p
= −θp. This means we can write

θ = (θq,0, θt)

without loss of generality. Plugging this back into ∇×θ = S = (dq
dt
, dp
dt
, dt
dt
) and looking at the third component

we get
dt

dt
= dθq

dp
.

Here we see that dt
dt
= 1 = dθq

dp
.8 Integrating with respect to p gives us

θq = p + g(q, t)
7Remember the curl of the gradient of a scalar field is always zero so our choice of f has no effect on S. That is to say S is

gauge invariant.
8Note here that the t in the numerator of this differential is technically different from the t in the denominator. In the

numerator t is an affine parameter while in the denominator it is a state variable.
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where g is an arbitrary function and thus can be set to zero. We have arrived then at θ = (p,0, θt). Let
θt ≡ −H. Plugging back in again to the cross product equation we arrive at a familiar system of equations

Sq = dtq = ∂pH

Sp = dtp = −∂qH

St = dtt = 1.
This is the standard form of Hamilton’s equations for a single degree of freedom where H is the Hamiltonian.

Generalizing this to a system with n degrees of freedom we recall that each infinitesimal surface in phase
space is mapped in time to a surface of the same area; this means that the number possible states remains the
same and that independent degrees of freedom remain independent and thus their surfaces remain orthogonal.
We can break down a higher dimensional system into its d.o.f.s in order to arrive at our final equations:

dtq
i = ∂piH

dtpi = −∂qiH.

This is the generalized form of Hamilton’s equations.9 A system that evolves according to these equations
is a Hamiltonian system.

Proposition 14. The deterministic and reversible evolution of an infinitesimally reducible system follows
Hamilton’s equations. So the evolution of the system can be written in the familiar way:

dtq
i = ∂piH

dtpi = −∂qiH

4 Conclusion

We have now successfully derived all of Hamiltonian Mechanics from two basic assumptions about a system.
By assuming that our system is Infinitesimally Reducible we derived the structure of phase space. With the
assumption that the system undergoes Deterministic and Reversible Evolution we found a set of equations
that describe the dynamics of the system. This is fundamentally different from Newtonian Mechanics, which
assumes a connection between a system’s kinematics and its dynamics.

This derivation of Hamiltonian Mechanics, while seemingly miraculous, is simply a product of creating a
one-to-one mapping of physical principles to mathematical structures. This precise way of understanding the
physical world provides a much more clear picture of the underlying physics within the abstract mathematics.
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