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Typical view in the foundations of physics

• Start with the theory that describes 
“what really happens”
• With the most complicated and most 

complete description

• Gradually derive other theories as 
approximations
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Theory of Everything

General Relativity Grand Unified Theory

Electro-weakQCD – Strong Interactions

QED -ElectromagnetismWeak interactions

…

approximation

The Assumptions of Physics project 
does not proceed in this manner



Understanding fundamental structures

Hamiltonian mechanics

Phase space (symplectic manifold) Hamiltonian evolution

Differentiable manifold Symplectic structure

Manifold Differentiable structure

Topological space Locally ℝ𝑛
We cannot truly understand this
if we don’t first understand this

Probability space

Measure𝜎-algebraSet of points

Even probability spaces
are not fundamental structures

I.e. Before saying “there is a 50% 
chance to get tails” we need to define 
what tails, chance and 50% mean

• What are the “correct” axioms and definitions on which to build scientific 
theories? How can they be justified?
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Experimental verifiability

General theory

Physical theories

Informational granularity

States and processes

Classical
phase-space

Assumptions
Determinism/

reversibility
Irreducibility

Infinitesimal 
reducibility

Basic requirements and 
definitions valid in all theories

Quantum
state-space

Hamiltonian
mechanics

Unitary
evolution

Specializations of the general 
theory under the different 
assumptions

Space of the well-posed scientific theories
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Assumptions of Physics

• Objectives:
• Develop a mathematical framework that can serve as the foundation for all scientific 

theories (i.e. a mathematical theory about scientific theories)

• Start from physical principles and assumptions and derive the math (not start from the 
math and add the physics later through an “interpretation”)

• Each mathematical object must have a clear physical meaning (no object is unphysical, 
can read math proofs as logical arguments on the physics)

• Construct concepts and tools that span different disciplines (nature does not care about 
divisions in fields of knowledge)

• Explore what happens when the assumptions fail, possibly leading to new physics ideas
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The logic of experimental 
verifiability
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Science deals with well-posed sets of assertions (non-contradictory) that have a single truth 
value (universal) that can be defined/ascertained experimentally (evidence based)
⇒ Verifiable statements: assertions that can be experimentally verified in a finite time

Examples:
The mass of the photon is less than 10−13 eV
If the height of the mercury column is between 24 and 25 
millimeters then its temperature is between 24 and 25 
Celsius
If I take 2 ± 0.01 Kg of Sodium-24 and wait 15 ± 0.01
hours there will be only 1 ± 0.01 Kg left

Counterexamples:
Chocolate tastes good (not universal)
It is immoral to kill one person to save ten (not universal 
and/or evidence-based)
The number 4 is prime (not evidence-based)
This statement is false (not non-contradictory)
The mass of the photon is exactly 0 eV (not verifiable due 
to infinite precision)

We have to keep in mind that the meaning of the statements, their relationships and what 
truth values are allowed depends on context (e.g. premise, theory, etc…)

The mass of the electron is 511 ± 0.5 KeV

When measuring the mass, it is a verifiable hypothesis When performing particle identification, it is assumed to be true
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𝒔𝟏 𝒔𝟐 𝒔𝟑 …

T T F …

T F T …

T F F …

𝒮
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𝑎

𝒔𝟏 𝒔𝟐 𝒔𝟑 …

T T F …

T F T …

T F F …
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𝒇 𝒔𝟏, 𝒔𝟐, 𝒔𝟑

T

T

F

Axioms of logic
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Axioms of verifiability
𝒮

𝒮v

𝑠1 𝑠2 𝑠3 …ሧ

𝑖=1

∞

𝑠𝑖

𝑠1

experimental test

𝑠1 Test Result

T SUCCESS (in finite time)

F
FAILURE (in finite time)

UNDEFINED

𝑠1 𝑠2 𝑠3ሥ

𝑖=𝑖

𝑛

𝑠𝑖

All tests must succeed

One successful test is sufficient
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𝒮
𝒮𝑣

𝒮𝑑

Different algebras for the different types of statements

“This animal is a bird” = “Questo animale e’ un uccello”
“This animal is a bird” ≡ “This animal has feathers”
truth(“This animal is a bird”) = truth(“That animal is a mammal”)

Are the same statement

Always have the same truth

Happen to have the same truth

(Different) notions of equivalences

Properties of the logic system
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Basis 𝓑 Experimental domain 𝓓𝑿 Theoretical domain     a

𝒆𝟏 𝒆𝟐 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ 𝒆𝟐 𝒔𝟐 = 𝒆𝟏 ∧ 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ ¬𝒆𝟐 𝒔𝟐 = ¬𝒆𝟏 …

F F F … F F … T T …

… … … … … … … … … …

F T F … T F … F T …

T T F … T F … T F …

… … … … … … … … … …

P
o

ss
ib

ili
ti

es

Start with a countable set
of verifiable statements

From them generate all verifiable statements
(close under finite AND countable OR)

Generate all meaningful predictions
(close under negation as well)

Fill in all possible
assignments

𝒙 = ¬𝒆𝟏 ∧ 𝒆𝟐 ∧ ¬𝒆𝟑 ∧ ⋯ For each possible assignment we have a theoretical 
statement that is true only in that case. We call these 
statements possibilities of the domain. 

ഥ𝓓𝑿

The points of the 
space (the 
possibilities, the 
distinguishable cases) 
are not given a priori 
but are constructed 
from the chosen 
verifiable statements

Experimental domains (scientific models)
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Basis 𝓑 Experimental domain 𝓓𝑿 Theoretical domain  𝓓𝑿

𝒆𝟏 𝒆𝟐 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ 𝒆𝟐 𝒔𝟐 = 𝒆𝟏 ∧ 𝒆𝟑 … 𝒔𝟏 = 𝒆𝟏 ∨ ¬𝒆𝟐 𝒔𝟐 = ¬𝒆𝟏 …

F F F … F F … T T …

… … … … … … … … … …

F T F … T F … F T …

T T F … T F … T F …

… … … … … … … … … …

P
o

ss
ib

ili
ti

es

Each column (statement)
is also a set of possibilities

𝑠 =ሧ

𝑥∈𝑈

𝑥

Finite AND and countable OR become
finite intersection and countable union

Negation and countable AND become
complement and countable union

The theoretical domain 𝒟𝑋 induces 
a (Borel) 𝜎-algebra

Topologies 
(needed for 
manifold/geometr
ic spaces) and 𝝈-
algebras (needed 
for integration and 
probability spaces) 
naturally arise 
from requiring 
experimental 
verifiability

Topologies and 𝜎-algebras
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The experimental domain 𝒟𝑋 induces a 
topology on the possibilities 𝑋. 



Maximum cardinality of distinguishable cases

• Sets with greater cardinality (e.g. the set of all discontinuous functions from ℝ to 
ℝ) cannot represent physical objects

• Issues about higher infinities (e.g. large cardinals) are not relevant, but those 
surrounding the continuum hypothesis may be

Set of distinguishable cases

FTFFFTTTFTFTT…
TFFTTFTTFFFTF…
FTFFFTTFTFFTF…
FTTFTFTTFTFFT…

Test results for countable basis

0100011101011…
1001101100010…
0100011010010…
0110101101001…

Correspondence to binary sequence

0.0100011101011…
0.1001101100010…
0.0100011010010…
0.0110101101001…

Correspond to binary expansion

ℝ

0

1

𝑋 𝑋 ≤ |ℝ|
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All definitions and all proofs about these 
structures have precise physical meaning 
in this context

𝑠1 Test Result

T
SUCCESS (in finite time)

UNDEFINED

F
UNDEFINED

FAILURE (in finite time)

𝑖𝑛𝑡(𝐴) corresponds to the verifiable
part of a statement

𝑒𝑥𝑡(𝐴) corresponds to the falsifiable
part of a statement

𝜕𝐴 corresponds to the undecidable
part of a statement

If 𝐴 ⊆ 𝑋 is a Borel set then “𝑥 is in A” is a theoretical statement: a 
test can be created, though we have no guarantee of termination
(e.g. “the mass of the electron in KeV is a rational number” is 
undecidable, the test will never terminate)

If 𝑈 ⊆ 𝑋 is an open set then “𝑥 is in 𝑈” is a verifiable statement
(e.g. “the mass of the electron is 511 ± 0.5 KeV”)

If V ⊆ 𝑋 is a closed set then “𝑥 is in 𝑉” is a falsifiable statement
(e.g. “the mass of the electron is exactly 511 KeV”)

Topologies and 𝝈-algebras 
each capture part of the 
formal structure

For us, they are part of a 
single unified structure

Topologies and 𝜎-algebras
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Physical meaning of separation axioms
• All topologies are Kolmogorov (i.e. 𝑇0)

• Possibilities are experimentally well-defined
i.e. possibilities constructible from a base by countable AND/OR 
and NOT (singletons in the 𝜎-algebra)

• The topology is 𝑇1 if all possibilities are approximately 
verifiable
• Possibilities are the limit of a sequence of verifiable statements

i.e. possibilities are the countable conjunction of verifiable 
statements

• The topology is Hausdorff (i.e. 𝑇2) if all possibilities are 
pairwise experimentally distinguishable
• Given two possibilities, we can find a test that confirms one and 

excludes the other
• i.e. for any 𝑥1, 𝑥2 ∈ 𝑋 there is a statement 𝑠 ∈ ഥ𝒟𝑋 such that
𝑥1 ≼ 𝑣𝑒𝑟(𝑠) and 𝑥2 ≼ 𝑓𝑎𝑙(𝑠)
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𝑠 Test Result 𝑥1 𝑥2

T
SUCCESS (in finite time)

T

F

F

UNDEFINED

F

UNDEFINED

FAILURE (in finite time)
T



Examples

Standard topology on integers
Decidable domain (all statements are decidable)
Discrete topology (every set is clopen); topology and 𝜎-algebra both 
coincide with the power set

0 1 2 3 4 5 6 …

Standard topology on the reals
Finite precision measurements (open intervals are verifiable)
Topology generated by open intervals (coincides with order and metric 
topology); separable, complete, connected (no clopen sets except full and 
empty set); 𝜎-algebra is the Borel algebra (strict subset of power set)
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Examples

Does extra-terrestrial life exist? 
Semi-decidable question

Topology ∅, 𝑌 , 𝑌, 𝑁 is strictly 𝑇0; 𝜎-algebra is the power set

How many leptons (electron-like particles) are there?
(through direct observation)
Can only measure lower bound (e.g.  “there are at least 𝑖”) 
Topology contains empty set and 𝑖, 𝑖 + 1, 𝑖 + 2,… for all 𝑖; strictly 
𝑇0; 𝜎-algebra is the power set

0 1 2 3 4 5 6 …

Y N
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𝑋 𝑌

A causal relationship is a map 𝑓: 𝑋 → 𝑌 such that 𝑥 ≼ 𝑓 𝑥

𝒟𝑋 𝒟𝑌

An inference relationship is a map 𝓇:𝒟𝑌 → 𝒟𝑋 such that 𝓇 𝑠 ≡ 𝑠

Two general and important results:
1) Two domains admit an inference relationship if and only if they admit a causal relationship
2) The causal relationship must be a continuous map in the natural topology

Inference/causal relationships and continuity
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e.g. the water density is 
between 999.8 and 

999.9 kg/m3

e.g. the water temperature 
is between 0 and 0.52 
Celsius or between 
7.6 and 9.12 Celsius

e.g. the water temperature 
is exactly 4 Celsius

e.g. the water density is 
exactly 1 kg/m3



• A “science first” formal structure is possible
• Physically meaningful, mathematically precise, philosophically consistent

• Precise science/math dictionary

• “Well-behaved” mathematical objects are really “well-defined” physical objects

• Experimental verifiability is the basis for scientifically well-defined objects
• Topologies and 𝜎-algebras arise from scientific epistemological requirements, not from 

ontological features of the universe

• Most other structures used in science (differential geometry, measure theory, probability 
theory, Lie algebras, …) are based on topologies and 𝜎-algebras

• No progress in the foundations of physics is possible without proper 
understanding of these connections

Takeaway
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The assumptions of classical 
mechanics
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Assumption of infinitesimal reducibility

time

The system is reducible to its parts: giving the state of 
the whole is equivalent to giving the state of the parts. 
The system can be subdivided indefinitely.

𝒮 is the state of the infinitesimal parts (i.e. particles)

𝑈 is a set of possible states for the particles

ℝ

𝑉 is a set of possible
amounts of materials

We’ll have statements of the form 
“the amount of material found in 𝑈 is 
within the range 𝑉”

𝒮

𝑈
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Density over states

𝜌: 𝒮 → ℝ
The state of the whole is given by a 
distribution over the state of the 
infinitesimal parts (i.e. particles)

𝜌 𝓈 𝜉𝑎 = 𝜌 𝜉𝑎
This presents a puzzle:

Under a change of variables መ𝜉𝑏 = መ𝜉𝑏 𝜉𝑎

𝜌 𝜉𝑎 =
𝜕𝜉𝑎

𝜕 መ𝜉𝑏
𝜌 መ𝜉𝑏

𝓈 𝜉𝑎 = 𝓈 መ𝜉𝑏

we have 𝜌 𝓈 𝜉𝑎 = 𝜌 𝓈 መ𝜉𝑏

How can 𝜌 both change as a density and be an invariant?

22

න
𝑈

𝜌𝑑𝒮

Fraction of the system in a region 𝑈
Density depends on the state; 
unit is [amount]/[states]
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Units

• When we write 𝑈 𝜌(𝓈)𝑑𝒮, 𝜌 is expressed in units of [amount]/[states]

• When we write 𝑈 𝜌 𝜉𝑎 𝑑𝜉𝑛, 𝜌 is expressed in units of [amount]/[𝜉1]…[𝜉𝑛]

• It seems we need to characterize the role of units

• The units of some variables depend on the units of others
• E.g. the unit for velocity 𝑣 = 𝑑𝑥/𝑑𝑡 along a direction 𝑥 depends on the unit for distance 

along that direction and time; the unit for entropy 𝑑𝑆 = 𝑑𝑄/𝑇 depends on the unit for 
energy and temperature

• Within the state variables 𝜉𝑎, we identify the unit variables 𝑞𝑖 as those that 
define the unit system
• A change of units ො𝑞𝑗 = ො𝑞𝑗(𝑞𝑖) must induce a unique transformation መ𝜉𝑏 = መ𝜉𝑏 𝜉𝑎 on all 

variables
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Phase space (symplectic manifold)
• The structure of phase space is exactly what is needed to define invariant 

densities over particle states

• For a single degree of freedom (i.e. one independent unit variable)
𝑑𝑆 = ℏ𝑑𝑞𝑑𝑘 = ℏ𝑑ො𝑞𝑑𝑘

• For 𝑛 independent degrees of freedom
𝑑𝑆 = ℏ𝑛𝑑𝑞𝑛𝑑𝑘𝑛 = ℏ𝑛𝑑ො𝑞𝑛𝑑𝑘𝑛

• Canonical variables are those that allow us to express density in the correct 
units over each independent degree of freedom
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1Δ𝑘 = 1 𝑚−1

Δ𝑞 = 1 𝑚

1Δ𝑘 = 0.01 𝑐𝑚−1

Δො𝑞 = 100 𝑐𝑚

The product Δ𝑞Δ𝑘
is invariant 

ො𝑞 = 100 𝑐𝑚/𝑚 𝑞



Assumption of deterministic and reversible evolution

time

Given the state of the system at one time, we are able 
to predict the state at future times (determinism) and 
reconstruct (reversibility) the state at past times.

All and only the particles from 𝓈𝑡 must be 
found in 𝓈𝑡+Δ𝑡: 𝜌 𝓈𝑡, 𝑡 = 𝜌 𝓈𝑡+Δ𝑡, 𝑡 + Δ𝑡

𝒮

25

time

Dynamical system 𝓈𝑡 ↦ 𝓈𝑡+Δt

Not enough!

Independent degrees of freedom must be 
mapped to independent degrees of freedom

⇒ Hamiltonian mechanics (symplectic structure must be preserved)

C. A. Aidala - G. Carcassi - University of Michigan



Hamiltonian mechanics for one degree of freedom

𝑡
𝑝

𝑞

Ԧ𝑆 =
𝑑𝑞

𝑑𝑡
,
𝑑𝑝

𝑑𝑡
,
𝑑𝑡

𝑑𝑡

Displacement along the trajectory

Ԧ𝑆 = −𝑐𝑢𝑟𝑙( Ԧ𝜃)

Deterministic and reversible:
flux over a closed surface is zero 𝑑𝑖𝑣 Ԧ𝑆 = 0

Ԧ𝜃 = 𝑝, 0, −𝐻 𝑞, 𝑝

Because 
𝑑𝑡

𝑑𝑡
= 1 we can choose a gauge such that:

Ԧ𝑆 =
𝑑𝑞

𝑑𝑡
,
𝑑𝑝

𝑑𝑡
,
𝑑𝑡

𝑑𝑡
=

𝜕𝐻

𝜕𝑝
, −

𝜕𝐻

𝜕𝑞
, 1 = −𝑐𝑢𝑟𝑙( Ԧ𝜃)

This recovers Hamilton’s equations
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Understanding Hamiltonian mechanics

Hamiltonian mechanics

Phase space (symplectic manifold) Hamiltonian evolution

Differentiable manifold Symplectic structure

Manifold Differentiable structure

Topological space Locally ℝ𝑛

27

Particle states are experimentally
distinguishable …

… using continuous variables

The composite system is a density …

… that is invariant under change of units

The evolution is deterministic and reversible

Each mathematical structure is linked to a specific physical requirement
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Possible contributions
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Bare minima

• Project is very interdisciplinary and requires knowledge from different areas of 
math, physics and engineering

• We want to create a series of short (12-16 pages) articles that give the basic 
definitions and main results of each field: the bare minimum one needs to know
• E.g. Set theory: https://assumptionsofphysics.org/resources/bareminima/SetTheory.pdf

• Hourly work
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Other small tasks (hourly work)
• There are a number of smaller questions it would be nice to settle

• Is every Heyting algebra embeddable in a Boolean algebra?
• To make sure we are not ruling anything out

• Finalize last few details in our basic structures
• Find the “correct” morphism that gives us the right product, …

• Study a Gaussian peak under linear Hamiltonian flow
• To generalize the “classical uncertainty relationship”

• Special relativity from densities
• Look for hints of general relativity in the extended phase space

• See if the link between symplectic form, metric and vector potential leads to relationships to the curvature
• Characterize quantum projections as processes with constraints that maximize entropy
• Analyze the relationship between linearity of mixed (classical mixtures) and pure states (quantum 

superposition) in quantum mechanics
• Can superposition be fully characterized by “aliasing” of mixed states?

• Some of these questions may be already solved in the literature, some may be hard
• Helping to formalize/organize the questions is also useful
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A new foundation for measures and geometry
• We saw that topological and 𝜎-algebraic structures come from experimental 

verifiability: how do we recover the rest?

• Note that measures and metrics are used to give a “size” to sets

• In physics, conceptually, we start with the ability to compare sizes (this is bigger than 
this); we then construct measurement scales to give numerical values

• The idea is to provide a foundation for measure theory and geometry in the same 
way: we have the lattice of all possible descriptions (our 𝜎-algebra); we add a 
preorder that tells us whether one description is “finer” (i.e. more refined) than 
another; pick a unit and construct a “measure” that respects the order and that is 
linear under “disjoint addition”

• The goal is to find a set of sufficient physically justifiable conditions for which such 
measures can be constructed

• For preliminary work, see 
https://assumptionsofphysics.org/resources/blueprints/InformationGranularity.pdf
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Physical entropy as counting evolutions
• The idea is to define how to “count” (in a measure

theoretic sense) the possible evolutions of a system;
we define the process entropy as the logarithm
of that count

• State entropy becomes the process entropy associated
to all possible evolutions that “pass” through that state at that time

• Equilibrium states concentrate the evolutions and therefore they maximize the 
process entropy

• The goal is, with similar considerations, to rederive the basic laws of 
thermodynamics in the most possible general setting, and recover the standard 
formula for entropy (i.e. Gibbs, log of count of states, …) in specific cases

• For preliminary work, see 
https://assumptionsofphysics.org/resources/blueprints/ProcessEntropy.pdf
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Other bigger tasks

• Find a reformulation of quantum mechanics that fits better in the framework
• Projective spaces? Use mixed states as prime object? Algebraic? 

• Find a set of physical motivations to introduce differentiability and differential 
forms
• General idea is to describe linear quantities associated to k-dimensional submanifolds 

(rough ideas in Bachelor’s thesis https://assumptionsofphysics.org/Thesis-Johnson-
DifferentialGeometry.pdf )

• …
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Final thought
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Prima dovete capire le cose nel piccolo, e poi 
generalizzare

First you have to understand the simple case, and 
then generalize

Se non avete capito nel piccolo, capirete ancora meno
quando generalizzate

If you haven’t understood the simple case, you will 
understand even less when you generalize


