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Abstract

This article gives an overview of the project “As-
sumptions of Physics” which aims to rederive the
known laws from a few physically meaningful start-
ing points. It presents the motivations behind the
project, a summary of the main findings and current
status of the research.

1 Introduction

The aim of this article is to give a broad overview
of the project “Assumptions of Physics”: its motiva-
tions, its status and a list of the main findings. It is
intended to be a good start for anyone interested in
simply learning more about the project or finding an
area for collaboration.

As we plan to update this document, please make
sure you have a recent version. Each subsection will
be fairly self-contained to allow the reader to skim
through the document and focus on the parts of in-
terest. It will contain a summary section at the be-
ginning and a titled paragraph for each of the main
idea or finding.

2 Goals and method

A better understanding of physics. The overall
goal of the project is to better understand physics: to
understand why the laws of quantum mechanics, or
classical mechanics, are what they are; to understand
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the limit of the validity of the different theories; to
understand what the Poisson brackets, or any other
mathematical operation, represent physically; to un-
derstand which mathematical objects correspond to
actual physical entities and which are just artifacts;
to understand what new theories are possible.
Ideally, we want to achieve a single unified frame-
work for all science that is physically meaningful
(i.e. it is clear what each objects represents experi-
mentally and why must it be represented that way),
mathematically precise (i.e. the physical assumptions
are captured through axioms and definitions and then
the arguments are carried out with the rigor of mod-
ern mathematics) and philosophically consistent (i.e.
the concepts and viewpoints taken fit with the math-
ematical results and the practice of science).

2.1 Objectives

The overall goal of a better understanding of physics
can be broken down into the following five objectives.

Clarify the assumptions. Physics is currently a
patchwork of different theories (e.g. classical mechan-
ics, quantum mechanics, thermodynamics, ...) that
are used for different systems or for the same system
in different contexts. When should we use one in-
stead of another? What are the limits of validity of
each theory? We want to understand what are the
assumptions one has to make on a system such that
it can be studied with a particular theory. The only
way to make sure our assumptions are necessary and
sufficient is to show the theory can be rederived from
them. This, in turn, gives us a better idea of what



each theory describes, how it fails, and what new di-
rections one could take.

Put physics back at the center of the discus-
sion. Physics used to try and identifies basic “laws”
or “principles” for itself. Current physical theories,
instead, just postulate a mathematical structure rele-
gating physics to a mere after-the-fact interpretation.
We want to go back to the old approach: we want
to start with the physics and derive the math suit-
able to capture those physical concepts. Ideally, no
mathematically construct should be introduced if it is
not physically motivated. Why is phase-space formed
with conjugate pairs? What does the commutator
represent? If these are really representing physical
objects, we should have a better understanding than
a vague “you can think of it as...” or a cryptic math-
ematical “it is the left action of a fiber bundle on
a...”. Most of our understanding should come from
physical intuition and not from the mathematics it is
used to represent it.

Give science sturdier mathematical grounds.
There is a general sense within physics that, at some
point, mathematical details are physically not in-
teresting and should be handled “appropriately” by
mathematicians. Therefore even mathematical struc-
tures that originally came from physics are now for-
malized by mathematicians to solve their own needs,
and not the physicist’s. This, in turns, reinforces
the idea that those details are not interesting to the
physicists. The reality is that a well-posed physi-
cal problem must also be a well-posed mathematical
problem, but not the other way around, so leaving
the details to the mathematicians means having fun-
damental structures that are less physical.! Mathe-
maticians will come up with definitions so that the-
orems are easier to prove or calculations are easier
to perform. They will not come up with definitions
based on whether they are physically meaningful. If
we give a theory, as we said before, by simply stating
a mathematical structure, then there is no guarantee
that what we give is a fully physical theory. Unphys-
ical elements simply means the physical problem was
not specified correctly. If we truly are able to give a

lFor example, quantum states are modeled with Hilbert
spaces even though we know they contain mathematical ob-
jects that are unphysical.

precise physical meaning to every mathematical ob-
ject, then our formal structures will map one-to-one
to our physical understanding. This means no un-
physical mathematical artifacts and a more precise
mathematical treatment of physics.

Foster connections between different fields
of knowledge. Knowledge is increasingly special-
ized and fewer and fewer people are well versed in
more than a couple of subjects. Yet, connections
between different fields of science, mathematics and
engineering are routinely found to be useful for one
simple reason: nature is one and does not care about
such divisions. A more holistic vision of scientific
knowledge, then, is a natural byproduct of our effort.
The notions of state, environment, process and equi-
librium, for example, are intertwined and are fun-
damental to most fields of science and engineering.
Proper characterization of such basic concepts will
give a common language and mathematical tools that
span across different disciplines.

Provide a solid basis for new theories. Most
of the attention in fundamental physics is focused
on the development of new theory or the search for
new effects. A better understanding of the current
theories, recast in a single broader and more precise
framework, will probably facilitate that search. It
makes explicit what ingredients went into the theo-
ries, so we know what assumption can fail and what
principles cannot be changed.? If all physical theories
can be seen as instances of a more general structure,
they prove that the general structure is sound and
provide templates for new theories.

While the objectives cover many areas and are very
broad, our experience tells us that they are ultimately
connected and cannot be pursued to their fullest inde-
pendently. Therefore we are always looking for peo-
ple with diverse background and interest to help us
cover the different areas.

2For example, we may abandon the assumption that space
is measurable at an indefinite precision, leaving the realm of
manifold and real numbers; yet we cannot abandon the notion
that space is experimentally accessible, staying in the realm of
second countable Ty topological spaces.



2.2 Methodology

As each topic is investigated by the project, it gener-
ally goes through three phases. Reverse engineering,
where we try to find what assumptions are beneath a
theory. Forward engineering, where we try to check
whether the theory can be recovered from the as-
sumptions we found. Formalization, where we try
to codify in mathematical language the assumptions
and the derivation.

Reverse engineering. The goal of this phase is to
deconstruct an already existing theory or mathemat-
ical structure to understand what each piece is sup-
posed to represent physically. One way to conduct
such investigation is to ask what would happen if a
particular characteristic of the framework would fail.?
This usually leads to a set of necessary assumptions
about the physical system one is describing, the ones
one must take for the particular description to apply.

Forward engineering. The goal of this phase is to
construct an argument from the necessary assump-
tions outlined in the previous phase to rederive the
framework at hand. This checks whether the neces-
sary assumptions are also sufficient 4. It ends when a
set of necessary and sufficient conditions to rederive
the theory are found, meaning that the full theory
has been physically characterized.

Formalization. The goal of this phase is to take
the previous set of arguments and formalize them
in pure mathematical language. This forces us to
clarify all the starting points and what parts of the
arguments are truly formal and what are physical.
Unfortunately, this can ultimately be done only by
starting from the very foundations® though we are at
a point where an overall tentative structure is emerg-
ing and tentative formalization can be attempted on

3For example, a line of reasoning could be as follows: Hamil-
ton’s equations are differential; if they weren’t the mapping of
densities and areas would not be well defined; maybe Hamilto-
nian mechanics is not about mapping points but about map-
ping densities or areas.

4For example, if we started simply by assuming we have
density distributions mapped in time, this would give us all
possible differentiable evolutions, not necessarily Hamiltonian
ones.

5For example, before formalizing Hamiltonian mechanics we
have to formalize differentiable manifolds, real numbers and
topological spaces.

higher structures.

2.3 Organization

The overall project is organized into the following
macro-categories.

The general theory. This formalizes the basic
mathematical framework that is the basis for all sci-
ence. As every algebraic structure in mathematics is
a specialization of the generic structures axiomatized
by set theory, all scientific theory are ultimately spe-
cialization of the generic structure provided by the
general theory. This defines the basic requirements
imposed on a theory by logical consistency and exper-
imental verifiability. It defines properties and quan-
tities, accuracy and other concepts of general appli-
cability.

Physics core. This defines the notions that are
fundamental to physics specifically, such as states,
processes, environment, equilibrium, determinism
and so on. The idea is to define these concepts in
the most general way possible such that common re-
quirements can be identified. Every physical theory
is a further refinement of this structure in that it will
choose to study a particular set of states over a par-
ticular process.

Physical theories. This studies the different
assumptions that are needed to recover the known
physical theories. The assumptions typically describe
what level of description is available for the system
and its parts, how does it change in time and whether
trajectories are enough to recover it.

3 The general theory

This part of the project focuses on the development of
a rigorous mathematical framework that can provide
the building blocks that are common to all scientific
theories. As logic and set theory provides the founda-
tion for all other mathematical structures, which are
essentially sets with associated operations, the gen-
eral theory will define common tools (e.g. logic of
experimental verification, causal relationships, mea-
surable quantities) that other theories will specialize
in different ways.



3.1 The Principle of Scientific Objec-
tivity

Our guiding principle is that “Science is universal,
non-contradictory and evidence based.” Any scien-
tific theory must be logically consistent, its content
be equally true or false for everybody and it must deal
with what can be established experimentally. Dif-
ferent branches of science will specialize on different
systems and topics, but all the theories and mod-
els they develop must satisfy those basic constraints.
The general theory deals with the fundamental math-
ematical structure needed to realize that principle.

Not every subject can be studied by science. The
principle indirectly states that anything that is sub-
jective, contradictory or not evidence based cannot
be the subject of scientific investigation. The prop-
erties of prime numbers, moral and existential ques-
tions or the aesthetics of music fail in at least one
of those respects and are excluded. Only the parts
of nature that are accessible through consistent ex-
perimental verification can be studied scientifically.
New experimental techniques have been extending
that reach over time.

3.2 The Logic of Verifiable
ments

State-

The basic element in our framework is the idea of a
verifiable statement: an assertion that is either true
or false for everybody and for which we have an ex-
perimental test that will terminate successfully in fi-
nite time if and only if the statement is true. The
most basic structures therefore need to provide a logic
framework to keep track of what statements are ver-
ifiable and their relationships.

3.2.1 Logical contexts

A logical context consists of a set of statements with
well defined logical relationships. It is the most fun-
damental structure and it is the only one that is ax-
iomatically introduced. A scientific theory will con-
sist of a set of statements taken within a logical con-

text with particular logical relationships.® The con-
text defines basic logical relationships (e.g. equiva-
lence, narrowness, compatibility and independence)
which form the basis for higher level constructs (e.g.
ordering, linear and statistical independence). Every
other structure imposed on the statements, to be log-
ically consistent, will need to “play” nice with these
fundamental relationships.

Note on terminology. The terminology may depart
slightly from what logicians may be accustomed to,
simply because our aim is different. Namely, our goal
is not to study the rule of inference or study what
can be formally proven, but simply to keep track of
the logical relationships between statements that are
assumed to be already given.

Statements as primary object. Every formal theory
needs prime objects, elements that will not further
be described by the theory. We will take statements,
assertion that are either true or false for everybody,
as these objects. The formal system will specifically:

not be propositional; the language of the statements,
its syntax, its grammar, will be left unspecified;
statements will represent the content regardless
of how it is expressed;

be algebraic; operations on statements will not
form new statements, but describe relationships
within a given set of statements; note that most
mathematical structures used in science are alge-
braic (computer science is a notable exception)

purely formal; the semantic of the statements is not
captured, though the semantic will impose logi-
cal relationships that will be formally captured

Statements cannot exist in isolation. Statements
should, in general, not be regarded as independent
of the context they are part of. Take the statement
“The mass of the electron is 510 £+ 0.5 KeV”. If we are
measuring the mass of the electron, that is a state-
ment that may or may not be true depending on ex-
periment. If we are performing particle identification

6For example, Newtonian mechanics will use statements like
“the mass of the object is 1 Kg” and “the acceleration of the
object is 1 m/s2”. If both of these are true, then the statement
“the force on the object is 1 N” is also true.



in a detector, that statement is assumed to be true.
The truth values allowed by the same statement de-
pends on context.

Logical context as the fundamental structure. A
logical context is a set of statements with well de-
fined logical relationships. It defines which truth as-
signments are possible (i.e. are consistent with the
semantic of the statements). It identifies one of the
possible assignments as the true one. It allows to
find statements whose truth value depends on others
through a particular Boolean function. The existence
of this structure is introduced by axioms as they are
crossing the lines between physical objects and math-
ematical ones. We currently do not assume there is
a single universal context.

Tautologies, contradictions and contingent state-
ments. We define tautologies as those statements
that are true in every assignment, contradictions as
those statements that are false in every assignment
and contingent all the remaining.

Statement equivalence and Boolean algebra.
Within our formal system, we can distinguish
between:

statement equality: two statements that re-express
the same fact in different languages or in differ-
ent words

statement equivalence: two statements have the
same truth value in all possible assignments

statement material equivalence: two statements

have the same truth value

A logical context is a complete Boolean algebra under
statement equivalence.

Narrowness and ordering. A statement is narrower
then another if whenever it is true then the other is
also true. Narrowness can often be thought as impli-
cation, except in a few corner case (e.g. a statement
that is always false is narrower than any other state-
ment). Narrowness imposes a partial order to the
structure. This is the same order associated to the
fact that every Boolean algebra is a complemented
distributed lattice.

Compatibility and independence. Two statements
are said to be compatible if they can both be true in

the same assignment. Two statements are indepen-
dent if fixing the truth value of one does not restrict
the truth value of the other. Independence, like linear
independence or statistical independence of which it
is the foundation, is a property of a set of statements
and is not transitive.

3.2.2 Verifiable statements

Logical contexts need to keep track which statements
are experimentally verifiable. A statement is experi-
mentally verifiable if we are provided with a test that,
if the statement is true, will always terminate success-
fully in a finite time. The fact that the test has to
terminate in a finite time in the positive case and
that it may not terminate in the negative case has
profound implications. The negation of a verifiable
statement is not in, general, a verifiable statement.
The finite conjuntion (i.e. logical AND) of verifiable
statements is a verifiable statement, but not an infi-
nite one. The countable disjunction (i.e. logical OR)
of verifiable statements is a verifiable statement, but
not a more then countable infinite one. Therefore
verifiable statements are not closed under the stan-
dard logical connectors

Different algebra. Verifiable statements do not fol-
low the standard Boolean algebra. The negation of a
verifiable statement is not necessarily verifiable since
the test is not guaranteed to terminate. The con-
junction of a finite set of verifiable statements is nec-
essarily verifiable since we can run the tests one by
one and, if all are successful, the conjunction is also
verified. This cannot be extended to an infinite set
since the test would not terminate. The disjunction
of a countable set of verifiable statements is neces-
sarily verifiable since, once one test terminates, the
disjunction is verified and we can stop. This can-
not be extended to an infinite set that is more than
countable since we would not be able to find the test
that terminates in a finite time.

Decidable statements. These are statements that
can be verified and falsified. That is, their test al-
ways terminates. These can be defined from verifiable
statements and they follow a finite Boolean algebra:
the negation, finite conjunction and finite disjunction
of decidable statements is also decidable.



3.2.3 Experimental and theoretical domains

We define an experimental domain as a set of verifi-
able statements that can be expressed as the combi-
nation of a countable subset (i.e. a countable base).
Because of finite time verifiability, this is the biggest
space we can experimentally probe given an indefi-
nite amount of time. An experimental domain, then,
represents all the information that can be gathered
experimentally about a particular subject.

From each experimental domain we construct a
theoretical domain by allowing negation as well. This
will include all statements for which an experimental
test is in principle possible, though there is no guar-
antee of termination. A theoretical domain, then,
represents all statements to which we can attach a
prediction.

Within a theoretical domain we define the set of
possibilities as those statements that, once known
to be true, will set the truth value of all other
statements. Each possibility represents a possible
case that is distinguishable experimentally and cor-
responds to a unique possible assignment for the ex-
perimental and theoretical domain.” Because of the
countable base, the set of possibilities can never be
greater than the continuum.

Mazximum cardinality for the possibilities. Because
the domain is generated by a countable set of ver-
ifiable statements, the possibilities must be distin-
guished with a countable sequence of boolean values.
This means that the cardinality of the possibilities
cannot exceed that of the continuum. This means
that higher order infinities and all associated prob-
lems do not play a role in science.

3.2.4 Topologies and o-algebras

An experimental domain provide a natural topology
over the possibilities. Each verifiable statements can

7For example, an experimental domain consists of a set of
statements that can be tested experimentally (e.g. “the animal
has whiskers”, “the mass of the photon is less than 10~ 13eV/”).
The theoretical domains extends to statements that may not
be tested experimentally (e.g. “the mass of the photon is ex-
actly 0 eV”). The possibilities consists of all the possible cases
(e.g. “the animal is a cat”, “the mass of the photon is exactly
0.10210 34eV ).

be identified with the set of possibilities compatible
with it.® Since verifiable statements are closed un-
der finite conjunction and countable disjunction, the
sets corresponding to verifiable statements form a Ty
second countable topology.

On the other hand, theoretical domains provide a
natural o-algebra over the possibilities. Each the-
orical statement can also be identified with the set
of possibilities compatible with it. Since theoreti-
cal statements are closed under negation and count-
able disjunction, the sets corresponding to theoretical
statements form a o-algebra, which is the Borel alge-
bra of the natural topology.

Topologies and o-algebras provide the foundations
for differential geometry, Lie algebras, measure the-
ory, probability theory and many other mathemat-
ical tools used in physics and the sciences. As we
now have a precise understanding of what they rep-
resent, all concepts and proofs in those subject can
be understood in terms of experimental verifiability.

Interior, exterior and boundary. Given a test asso-
ciated to a theoretical statement, it will either termi-
nate successfully, terminate unsuccessfully or never
terminate. Each Borel set is associated with a theo-
retical statement, which means it is associated with a
test. The interior of the Borel set represents the cases
in which the test will terminate successfully; the ex-
terior represents the cases in which the tests will ter-
minate unsuccessfully; the boundary represents the
cases in which the test will not terminate.

Decidable and undecidable statements. A theoreti-
cal statement is decidable if the associated test always
terminates, which means the boundary is empty.
This corresponds to a clopen set. It is undecidable
if the associated test never terminates, which means
the boundary is the full set.”

3.2.5 Status and open issues

This part of the work is very well developed. More
work could be done in finding meaning for all math-

8For example, the statement “the mass of the photon is less
than 10~13eV” is equal to the disjuntion of all statement of the
form “the mass of the photon is exactly z eV” with z < 10~13

9For example, “there are three apples in the bowl” is a de-
cidable statement, while “the mass of the electron is a rational
number when expressed in eV” is undecidable.



ematical concepts (e.g. compact sets, all separabil-
ity axioms, ...). It would be interesting to reach out
to individuals from related fields (i.e. logic, founda-
tions of mathematics, philosophy of science, ...) to
see whether any aspect of this section would be novel
and interesting to their respective communities.

3.3 Domain relationships

The study of experimental domains gives us basic
constructions that investigate the way different do-
mains can be related or combined.

3.3.1 Relationships and equivalence between
domains

We define two relationships between domains: infer-
ence relationships and causal relationships. An infer-
ence relationship establishes that testing a verifiable
statement in one domain is the same as testing a ver-
ifiable statement in the other. Mathematically it is a
map that takes a verifiable statement from one and
returns a verifiable statement from the other that is
equivalent to the first. A causal relationship estab-
lishes that determining which possibility is true in
one domain also determines which possibility is true
in the second. Mathematically it is a map that given
a possibility of the first returns a possibility of the
second that is broader than (i.e. less specific, true in
more cases) the first.

One result is that causal relationships must be con-
tinuous function in terms of the natural topologies,
which justifies why functions in science are always
assumed to be “well-behaved” (i.e. analytically con-
tinuous with at most countable discontinuities). An-
other results is that there exists an inference implica-
tion between two domains if and only if there exists
a causal relationship between them. The direction of
the inference is the opposite of the causal direction.
Therefore we say that a domain depends on another
if there exists an inference relationship between the
first and the second or if there exists a causal rela-
tionship between the second and the first. If the re-
lationships are invertible (i.e. each domain depends
on the other) then the domains are equivalent.

Continuity and inference. An inference relation-
ship establishes that testing a verifiable statement in
one domain tells whether a statement in the other is
true or false. As these statements are equivalent, the
experimental test on one constitutes an experimen-
tal test on the other, which means the second state-
ment is verifiable. One cannot impose an inference
relationship between a verifiable and non-verifiable
statement. In terms of the natural topology, these
correspond to open sets, therefore, by definition, the
map is continuous as it maps open sets to open sets.
The typical requirement that functions are “well be-
haved”, then, is actually physically significant.

3.3.2 Composite domains

Given two experimental domains, we can create the
composite by including all the verifiable statements
that can be constructed from them. A possibility of
the composite domain will determine the truth as-
signment for all statements of both original domains.
Depending on the logical relationships between the
two domain, we have different cases. If the two do-
mains are independent (e.g. position along two dif-
ferent directions), then the possibilities are the scalar
product of the possibilities. If one of the domains de-
pends on the other (e.g. the temperature of a mer-
cury column and its height), then the possibilities
are the ones of the independent domain. If the do-
mains are incompatible (e.g. plant species and animal
species) then the possibilities are the disjoint union.

3.3.3 Relationship domains

Given two experimental domains where one depends
on the other, we would like to characterize how the
relationship is identified experimentally.!® The main
difficulty is that, within a single context, there can
only be one such relationship or we would introduce
logical inconsistencies. Choosing an inference rela-
tionship, in fact, means fixing the logical relationship
between statements'! which ultimately means fixing

10For example, knowing that there is a causal relationship
between the temperature and the height of a mercury column,
we would like to measure how the two are related.

1 For example, “the temperature is 12 C” is incompatible
with “the height is 23 mm”



a logical context. Identifying the relationship, then,
means identifying the right context.

Given a set of contexts, each describing a possi-
ble relationship, we can construct an experimental
domain for the relationship in which each possibility
corresponds to a possible relationship and its context.
Whether or not the experimental test will exist in
practice, the mathematical construction can always
be performed resulting in just another domain. This
means that we can construct relationship domains
over relationship domains for any arbitrary higher
order relationship, meaning that the mathematical
framework is closed.

Tests for the relationship domain. The experi-
mental verifiability of relationship domain statements
cannot be proven from the verifiability of each do-
main. This formalizes the problem that being able
to measure a single point (i.e. the temperature and
height in a particular circumstance) is not enough
to verify the relationship (i.e. the temperature and
height are always linked in a particular way). The
ability to experimentally explore the space is what
builds confidence, which may not be always possible.
What constitutes enough evidence is left, as before,
outside of the formalism.

3.3.4 Status and open issues

The overall mechanics of composite domains and re-
lationships domains are fairly well developed and un-
derstood. There are details, though, that can be un-
derstood better. The connection to category theory
can be also better developed. Other common con-
cepts and constructions, like similarities or sequences
of domains, could be formulated.

3.4 Properties and Quantities

Another basic tool is the ability identify the possibil-
ities of a domain through the values of its properties,
since these are the ones that, in practice, we mea-
sure. Part of the general theory is the formalization
of these concepts.

3.4.1 Properties and values

A property is defined as a map from the possibilities
to the set of values that the property can have. The
map has to be topologically continuous as a measure-
ment on the property should correspond to a mea-
surement over the domain. We distinguish between
various cases depending on whether the property is
defined over all the possibilities and how much is able
to distinguish between all the elements

3.4.2 Quantities and ordering

Quantities are defined to be ordered properties, val-
ues have magnitudes that can be compared. The ob-
jective is to understand how this ordering is fully de-
fined by the logical relationships between verifiable
statement. The key insight is that 3 < 4 precisely
because “the quantity is less than 3” is narrower (i.e.
more specific) than “the quantity is less than 4”.

Ordered domains are constructed through refer-
ences (e.g. ticks of a clock, marks of a ruler or levels
of a graded recipient) that allow us to tell whether
the quantity is before or after itself. To have an or-
dered quantity, the set of references have to satisfy
a set of necessary and sufficient conditions that are
laid out by three ordering theorems.

Once those conditions are satisfied, the real and in-
teger numbers (i.e. continuous and discrete ordering)
respectively emerge by requiring either that between
two references there is always at least one more or
that there are only finitely many.

Of note is that the requirements for ordering itself
are quite demanding and are ultimately unlikely to
be satisfied for quantities like space and time. Which
would mean that not only time (or space) would not
be chartable by the real line, but that ordering would
not be well defined at the finest scale.

3.4.3 Status and open issues

Properties and quantities are fairly well developed.
The extension to manifolds should be straight for-
ward (require independent quantities to identify each
possibility within a “small” open set).



3.5 Further work

The general theory at this point covers only the
topological aspects and needs to be extended to the
geometrical /measure theoretical ones. Our current
thinking is that diverse aspects, such as geometry,
measure theory, probability theory, information the-
ory, can be recovered by characterizing the granular-
ity (i.e. accuracy) of the statements. Group theoret-
ical aspects may be recovered

Granularity as foundational concept. As each
statement corresponds to a Borel set of possibilities,
assigning a size to these sets effectively means giv-
ing a size to the statements themselves. For geom-
etry, two sets have the same volume because they
contain the same number of possible spatial points.
For probability, borrowing idea from Cox probable
inference, we would assign probability only on condi-
tional statements, therefore the P(sq|s2) would mea-
sure what fraction of the possibilities compatible with
$o are also compatible with s;. For information the-
ory, given two statements the logarithm of the ratio
of the size of the possibilities corresponds to the num-
ber of yes/no questions that are needed to go from
one statement to the other, the relative information.

Recover differential geometry or geometry measure
theory. The idea is to start with finite functions of
finite k-dimensional surfaces that have the following
properties: they are linear if the surface is broken
into disjoint parts (the value for the whole is the sum
of the values for the parts) and they respect the limit
(the value for the limit surface is the limit of the se-
quence of values for the surfaces). Under these, and
possibly others, conditions we expect these functions
to be expressed through an integral of local func-
tions (i.e. k-forms) over infinitesimal surfaces (i.e.
k-vectors).

4 Physics core

This part has not yet been formally developed,
though some common ideas are starting to emerge.
The main idea comes from the realization that, when
defining a system, the notions of states, processes,
time, evolution laws, interaction with the environ-

ment and equilibria are all interrelated and can’t be
given independently. Roughly speaking, to define a
system we have to choose a boundary that separates
it from the environment. Only the quantities that are
unaffected by the interaction with the environment
can, in those circumstances, be thought as properties
of the system. This in turns is linked to what we can
define as state for the system, which is linked to the
laws we can write. The processes and the laws are
naturally linked to what is assumed about time.

The idea, then, is that giving a set of states is actu-
ally giving a much richer structure. It means defining
a set of interaction at the boundary, it means defining
equilibria with such interactions, it means defining
time-scales below which and above which our descrip-
tion fails or is not interesting, it means defining how
probing the system may affect those assumptions.'?
The plan is, at some point, to formalize these ob-
jects and relationships to provide a basic mathemat-
ical structure that all physical theories must adhere
to.

All states are equilibrium states. In thermodynam-
ics equilibria are simply assumed to exist, without
specifying exactly how they are achieved. However,
in all physical theories, states are assumed to ex-
ist, without specifying what are the conditions upon
which the system can be characterized by such states.
The idea that, at the very least, all states must be
equilibrium states of processes that happen at a faster
scale than the processes than we are considering.'3
This sets the scale of infinitesimal time intervals.

States are objective but not absolute. The same
system can be found and studied in different condi-
tions. Depending on the circumstances we may be
interested in studying different properties of the sys-
tem.'* Therefore the state will change depending on

121f we are studying a molecule, we may impose boundaries
and processes such that that molecule and its constituent re-
main stable, which means, for example, interaction energies
lower than the chemical bonds.

13For example, the position and velocity of a book makes
sense on the surface of the earth, at a temperature of 293
Kelvin. On the surface of the sun, we would not be able to
talk about the position and velocity of a book.

M Consider a ball. If we are studying its motion, the state
can be typically be captured by position and momentum of
the center of mass. If the ball is rotating at high speeds in air,



the situation and our focus, and in this sense it is not
absolute. However, once the situation and focus are
well defined, the state is objective in the sense that
everybody will come to the same characterization.

The tension between isolation and interaction..
Properties of a system can be fully characterized if
they are not perturbed by the interaction with the
environment, if they are in stable equilibrium.!® To
fully characterize a system, then, we would want it
to be in perfect isolation.!® However, to be able to
measure those quantities we would like to interact
with the system. To fully access the system, then,
we would want it to be in constant interaction with
the environment. Conceptually, there is a trade-off.
Specifying the state space means characterizing this
trade-off for the specific system in the specific cir-
cumstances.

Determinism and reversibility is isomorphism.
TODO

[To be completed|

5 Physical theories

5.1 Classical mechanics

Classical mechanics can be derived from three main
assumptions: infinitesimal reducibility, determinism
and reversible evolution and kinematic equivalence.
From the first assumption we can show that the state
space of the infinitesimal parts of a system (i.e. par-
ticles) has the structure of phase space. From the
second we can show that the time evolution follows

the rotation speed and axis will also need to be part of the
state because of the Magnus effect. If we are studying the gas
within the ball, the state may be given by volume, pressure
and temperature. If the ball is so tiny and light that random
impact of the fluids on the surface will affect the motion, the
state will be a statistical ensemble. And so on.

15For example, the position of the center of mass of a can-
nonball is not affected by the air and can therefore be charac-
terized by a set of numbers; however, the position of the center
of mass of a spek of dust is affected by the air and must be
characterized by a probability distribution over the possible
values.

16Note that full isolation is not possible as this would mean
no interaction, not even gravitation, between the system and
the environment, to the point that the system has essentially
vanished.
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Hamiltonian mechanics. From the third we can show
that the system is Lagranian and is restricted to the
case of massive particles under potential forces.

5.1.1 Classical state spaces

Infinitesimal reducibility. A system is said re-
ducible if giving the state of the whole system is
equivalent to giving the state of its parts and vice-
versa. For example, given a ball, we can throw it and
study the motion of the ball. Alternatively, one can
take a red marker, make a red dot on the ball and
study the motion of the dot. The system is reducible
if studying the system is equivalent to studying the
motion of all possible red dots. The system is in-
finitesimally reducible if we can keep reducing the
system to smaller and smaller parts. We call particle
an infinitesimal part of the system, the limit of recur-
sive subdivision. The system is then described by a
distribution of the state of its parts over phase space,
which is the only structure that allows coordinate in-
variant distributions over continuous variables.

Composite states are distributions over particle
states. Under infinitesimal reducibility, if C is the
state space of the while system and S is the state
space of the particles, then each state ¢ € C for the
full system is identified by a distribution p : S — R
over the states of infinitesimal parts. The function is
real to signify that we can associate arbitrarily small
amounts to each particle states. The distribution tells
us how many particles can be found in each particle
state.

Continuous time implies particle state space is a
manifold. If time is assumed to be continuous, then
the state space S is a manifold. That is, each particle
state s € U C S can be identified by a set of contin-
uous quantities €% : U — R which we call state vari-
ables. It is a consequence of the general theory that, if
we wanted to write a trajectory £%(¢), then this must
be a topologically continuous function. Therefore,
conceptually, once we assume time to be a real num-
ber, the state space of the particles must be charted
by a set of real quantities: the topology that is given
to time reasserts itself on all the quantities that will
depend on time.

Densities imply differentiability. As we can write



the state s(£%) as a function of the state variables
&%, we will also want to write the density p(s(£%))
p(€%) as a function of the state variables. This re-
quires the state variables to be differentiable with
respect to the distribution and with each other. Re-
call that if the Jacobian is not well defined during

’ggz p(€*) then the
density wouldn’t be expressible in the new coordi-
nates. Mathematically, this means that the manifold
is equipped with a differentiable structure. Note that
any time evolution that would map a density to an-
other density will not only have to be continuous, but
also differentiable. In short: assuming density distri-
butions as our primary objects, instead of points, jus-
tifies why differentiable structures and differentiable
time evolution is present in physics.

a change of variable p(£%)

Coordinate invariant densities imply phase-space.
As particles states must be defined independently of
coordinate systems, they must be invariant under co-
ordinate transformations. That is, s(€%) = s(£2(£%)).
As the density distribution depends only on the state,
it should be invariant as well, that is p(s(£%))
p(s(€P(€7))). We have two seemingly contradicting
requirement: p should both change like a density and
be invariant. The only way to satisfy both require-
ments is the following: particle states are fully iden-
tified by a set of coordinates ¢* and by conjugate set
of variables k; whose units are the inverse of the ones
defined by ¢°. This way the product dq’dk; is a pure
number that is invariant under coordinate transfor-
mations. A coordinate transformation ¢/ = ¢’(q*)

induces a transformation k; = g%;ki such that the

area element dg’ dl%j = d¢* ggz, gg; dk; = dq'dk; is in-
variant. An independent degree of freedom, then,
is a pair (g, k) for which the units can be changed
independently from all other state variables. Math-
ematically, symplectic manifolds are the only spaces
that allow us to define coordinate invariant densities.
We can introduce a constant A such that p; = hk;
which at this point is simply an arbitrary choice of
unit.

Precise physics-math correspondence. These re-
sults gives us a precise understanding of what each
layer of the mathematical structure corresponds to
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physically:

Set of points: possible states for the particles.

Topological space: ability to experimentally distin-
guish the states.

Manifold: states can be distinguished with a set of
real valued quantities or state variables.

Differentiable manifold: we can define a distribution
over the states and the state variables.

Symplectic manifold: we can define a distribution
over the states that are coordinate independent.

5.1.2 Hamiltonian mechanics

Determinism and reversibility. A system under-
goes deterministic and reversible evolution if given
the initial state one can predict the final state and
given the final state one can reconstruct the initial
state. In other words, the system is predictable and
retrodictable. Densities at each past state must be
equal to the density of the corresponding future state,
which leads to Hamiltonian dynamics.

Reversibility as reconstructing the past. This def-
inition of reversibility should not be confused with
time symmetry or the ability to undo the change. The
first one means that if one substitute t — —t the dy-
namics is invariant (i.e. the same) or form invariant
(i.e. different but described by the same equations)
depending on the author. The second one means that
we can find another process that brings the final state
back to the original state. These concepts do not
seem to work well in the general case. For example,
when discussing reversibility in the sense of undoing
the changes, one typically discusses changing the di-
rection of the velocities to bring about the initial state
with inverted velocities. In the presence of forces or
an arbitrary dynamics, this operation because more
complicated or ill-defined. The core problem with
this definition is that it is not a property of the pro-
cess itself, but on the existence of other processes (i.e.
the process that undoes the changes or the process
that flips the velocities, therefore changing the state).
The requirement of time-invariance is too restrictive
as it excludes all time dependent processes. Form
invariance on an arbitrary set of equations, instead,
can be broken by a suitably complicated change of



variables, so it is only well-defined for a limited num-
ber of systems (e.g. particles under potential forces).
The definition of reversibility we use is preferable be-
cause it works more generally and, when appropriate
conditions apply, reduces to the other two which are
better regarded as special cases. It is mathematically
more elegant as it is the dual of determinism. It con-
nects directly with information theory, as it states
that the present has enough information to recon-
struct the past, which gives a logical bridge to con-
nect reversibility with information entropy and ther-
modynamics/statistical mechanics entropy.

Determinism and reversibility imply Hamiltonian
mechanics. In the context of infinitesimal reducibil-
ity, determinism and reversibility means that all the
particles and only the particle within a given initial
state p(s(t)) = p(s(t+ At)) will be mapped to a par-
ticular final state. That is, the densities will be pre-
served over time. Time evolution, then, is a canonical
transformation in phase space. As time is continu-
ous, we can find a function H : & — R which acts
as a time generator, which we recognize as being the
Hamiltonian. This is essentially Louisville’s theorem
applied in reverse.

Invariant densities under time transformations im-
ply extended phase-space. So far, time has been
treated as a parameter. If we introduce coordinate
transformation that mix time, however, this is no
longer possible. If d¢ = dq + vdt then the densities
need to be defined on dt as well. To do that, we have
to introduce a conjugate variable w of unit inverse
time so that dtdw is dimensionless and invariant. The
invariant area element becomes Y, dq'dk; — dtdw or
> dq'dp; — dtdE in units of h. For surfaces at equal
time dt = 0 it reduces to the previous case. For sur-
faces that are not at equal time, since the temporal
degree of freedom does cannot introduce new states,
we need to correct the area element to account for the
larger areas measured by the state variables that does
not correspond to new states. If we set ¢® = [t,¢']
and p, = [—F, p;] the area element becomes dq®dp,,.
These are elements of special relativity that come just
by requiring invariance under time transformation.
They do not come from invariance of the speed of
light, they do not require a metric tensore. In other
words, there is no way to have time transformations
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in Hamiltonian mechanics without requiring a four-
momentum co-vector. Special relativity is not an in-
dependent choice: it is already partially baked into
the two assumptions we took.

Ezxtended phase-space imply classical anti-particles.
The trajectories in the extended phase space are in
terms of an affine parameter s and not time: ¢°(s).
As the motion is still deterministic and reversible,
though, time ¢(s) must be monotonic with respect to
the affine parameter. For each state, the direction of
time can be either aligned or anti-aligned with the
affine parameter. Because the relationship is mono-
tonic, aligned states can only connect to other aligned
states and anti-aligned states can only connect to
other anti-aligned states. We call aligned states the
particle states and the anti-aligned states the anti-
particle states.

Time evolution is better expressed by the Hamil-
tonian constraint. The temporal degree of freedom
introduces two variables but, since one is energy,
there is an additional constraint since the value of
the energy is linked to the other variables through
the Hamiltonian. This link is better expressed by
the Hamiltonian constraint H : S — R which is
a function over the extended phase space, just like
the Hamiltonian was a function over the standard
phase space. The Hamiltonian constraint has two
roles: it gives us the equation of motions in the same
way of the standard Hamiltonian, and it constraints
the motion over the surface H = 0. To give con-
text, the Hamiltonian constraint for a free particle
isH = % — %mcz, which constraints the norm of
the four-momentum to mec. The Hamiltonian con-
straint, unlike the standard Hamiltonian, is invariant
under time transformation. It is the generator of the
evolution in terms of an affine parameter.

Hamiltonian constraint as operator on distribu-
tions. If p is the distribution for the whole system,
then Hp = 0. In fact, the distribution can only be
non-zero on the constrain, for which the Hamilto-
nian constraint is zero. So, for each point in the ex-
tended phase space, either the distribution is zero or
the Hamiltonian constrain is zero. Note that this is
the same form one has in quantum mechanics for the
Klein-Gordon and Dirac equations H|v) = 0, which



in fact can be understood as Hamiltonian constraints
that fix the norm of the momentum four-vector and
four-velocity.

Determinism and reversibility is equivalent to
conservation of information entropy. Given a
distribution, its information entropy is given by
I — [plogpd€™. In general, information en-
tropy is not invariant under change of variable:

— [ p(E)log p(€") dE™ = — [ p(¢") log p(&) dE™ —
J p(&%) log ’ gg d¢™. Under a canonical transforma-

tion over phase space, though, the Jacobian deter-
minant is unitary everyone therefore information en-
tropy is invariant. That is, invariance of the density
and invariance of its information entropy are one and
the same. Requesting that densities are conserved
in time is therefore equivalent to requesting that in-
formation entropy is conserved in time. This should
be intuitive: the amount of information needed to
identify an element within the initial or the final dis-
tribution is the same if the evolution is deterministic
and reversible. Deterministic and reversible evolu-
tion, Hamiltonian evolution and conservation of in-
formation entropy, then, are one and the same.

Conservation of information entropy leads to clas-
sical uncertainty principle. As information entropy
is conserved, a Hamiltonian process can only map a
distribution to one that has the same information en-
tropy. If we consider a single degree of freedom (g, p)
and fix the information entropy Iy, then the distri-
bution that minimizes the product of the standard
deviation is the Gaussian. The information entropy
for the Gaussian is given by Ig = In(2mecq0,). Dur-
ing the evolution, we have:

elo

>

Oq0, >
P = ore

5.1.3 Lagrangian mechanics and massive par-
ticles

Kinematic equivalence. A system is said to sat-
isfy kinematic equivalence if giving the state of the
system is equivalent to giving the trajectory in space
and vice-versa. That is, for each possible state there
is one and only one trajectory associated with it.
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Note that this is not true in general: for example,
given the trajectory of a photon we cannot recon-
struct its momentum since all photons travel at the
same speed. Under this assumption the relationship
between position/momentum and position/velocity
is invertible and the system admits a Lagrangian.
Moreover, given the transformation rules of momen-
tum and velocity, we find that there must be a linear
relationship between the two, which constrains the
dynamics to the one of massive particle under poten-
tial forces.

Note on notation. We use (¢%,p,) for position
and momentum and (%, u®) for position and velocity
even though ¢ = 2. We do this because % # Boa
since one is taken at constant p, and the other at con-
stant u®. This is a tremendous source of confusion
which is avoided by the use of the two symbols.

Kinematic equivalence means having an invertible
relationship between velocity and momentum. If the
state of the system (g%, ps) is enough to determine
the trajectory z%(s), then it will be enough to de-
termine the position and velocity (z%,u®). These
will be enough to reconstruct the state as they span
a space of equal dimension. As ¢% = z%, then
u® = u*(¢?, p,) is invertible.

Kinematic equivalence leads to Lagrangian me-
chanics. Since u®(g”,p,), we can write £ = ¢“po —H
as a function of (z%,u®). That is the Lagrangian of
the system. Note that this cannot be done if we do
not have kinematic equivalence. For example, for a
photon treated as a particle, we have H = ¢|p|. Using

dr’ — ¢ 2 which

Hamilton’s equations, we have u* = ££-
’ dt [p|

is not invertible. While we can write the Lagrangian,
this cannot be expressed in terms of position and ve-
locity.

Kinematic equivalence leads to linear relationship
between wvelocity and momentum. Being able to go
from (¢%, pa) to (z%,u®) and vice-versa is not enough.
We need to express the density p in terms of po-
sition and velocity as well. This means expressing
area elements dg®dp,, in terms of dx® and du®. Since
dx® = dq®, we must have dp, = mgagduﬁ where gag
is an arbitrary linear function and m is an arbitrary
constant of proportionality.

Linear relationship between velocity and momen-



tum leads to massive particles under potential forces.
We can integrate the relationship dp, = mgasdu”
and find p, = mgasu® + Ay (27) where A, are ar-
bitrary functions. Since u® = % = %, we can
take the previous relationship, integrate it again and
find H = 5= (pa — Aa)g*?(ps — Ag) + V. We recog-
nize this to be the Hamiltonian for a massive particle
under potential forces.

Inertial mass measures the number of states per
unit of velocity. Inertial mass is usually introduced
using the Newtonian relationship F' = ma: the lower
the mass, the easier is accelerate the body. If the
mass where zero, then, we would expect the body to
be infinitely easy to accelerate. If the mass is zero,
however, the velocity is fixed and the body cannot
be accelerated. The derivation offers a different in-
sight: inertial mass is the constant of proportionality
between ranges of velocity and ranges of states, as
measured by momentum. The higher the mass, the
more possible states are there per unit of velocity. If
there are more states per unit of velocity, then the
body is more difficult to accelerate as we have to go
through more states, which recover the Newtonian
intuition. However, if the mass is zero, set of states
defined in a unit of velocity has measure zero: we
cannot change state, we cannot accelerate.

The speed of light is a ration between the possible
states in a unit of space over the possible states in a
unit of time. Regarding the constant ¢ as a speed is
problematic. It is unclear why a speed, which is a
property of motion, would be part of the metric of
the space-time, which is defined regardless of motion
and of what is there in the space itself. The derivation
offers a different insight. As we move a state in space,
it will go through different possible states: this can
be quantified in phase space. As we move a state in
time, it will also go through different possible states:
this can be quantified on the extended phase space.
The ratio between the two is the constant c. If we
imagine a particle moving in both space and time,
the position may remain the same but the time will
always need to change. As the motion is deterministic
and reversible, at most we can have one position in
space for every position in time. Therefore, over a
finite time, we must have 22 < ¢. Thinking about

At

the constant ¢ as relating the count of states in space
over time is more fundamental.

The Planck constant, the speed of light and the in-
ertial mass serve to transfer the measure of states
from one quantity to another. As we saw initially,
(g, k) are the quantities on which we can measure the
number of states. The constant /i serves to transfer
the count from dk to dp. The inertial mass m serves
to transfer the count from du to dp. The speed of
light served to transfer the count from dt to dz. They
are book-keeping tools we use as we express states
over different quantities which allow us to express
in different ways the fundamental relationship com-
ing from determinism and reversibility: the count of
states must remain the same.

5.1.4 Status and open issues

We consider classical mechanics to be essentially for-
ward engineered. There are some details, though,
that could be better understood. The formalization
will need a lot more time as it has many mathemati-
cal prerequisites.

Physical meaning of the Poisson brackets. We still
miss an understanding of the Poisson brackets as a
generalization of Jacobian determinants. In princi-
ple, they should tells us how densities over a degree
of freedom formed by two variables transform. We
haven’t found the right approach.

Densities as measure theoretic derivatives. As we
want finite objects to be our starting points, densi-
ties should be the ration of amount of “stuft” divided
by the size of the region. This, in measure theory, is
known as the Radon-Nikodym derivative. We want
this idea to be combined with statistics and differ-
ential geometry, so that we can talk about marginal
distributions. It seems that gemoetric measure the-
ory at least partially addresses that, which would be
the first step for a full formalization of this section of
the project.

Relationship between metric tensor and symplectic
form. The way the derivation works, the metric ten-
sor is a secondary object that should be understood
as being applied to a differential of position and a
differential of velocity (e.g. dr®gagdu”). This gives
us the number of states on an area defined by the
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differentials. It is unclear whether the curvature of
Jap is linked to the geometry set by the symplectic
form.

5.2 Quantum mechanics

Quantum mechanics follows the same strategy as
classical mechanics with the difference that it as-
sumes irreducibility instead of infinitesimal reducibil-
ity. From this, one can show that the state of the
overall system is a complex inner product vector
space. The deterministic and reversible evolution cor-
responds to unitary evolution. From kinematic equiv-
alence one recovers Lagrangian and potential forces
as in the classical case
[To be completed]

5.2.1 Quantum state space

Irreducibility. A system is said irreducible if giving
the state of the whole system tells us nothing about
the state of its parts. For example, given an electron,
we can scatter a photon off of it to learn its state. Yet,
we cannot scatter with only a part of the electron,
we only scatter with the whole electron. The system
is irreducible because we cannot study, and assign a
state, to its parts.

Divisibility wvs reducibility wvs decomposability.
There are three concepts that are often confused to
one another. Divisibility is the possibility to divide a
system into two independent ones. That is, we have
a time evolution such that we start from a state of
a system and we end up with two states of indepen-
dent systems. Reducibility is the ability to describe
a system as the composition of more systems. That
is, giving the state of the system at one time is the
same as giving the state of the parts at the same time.
These are independent properties.!” Decomposabil-
ity is the ability to treat one object as the composi-
tion of others. We take two objects or descriptions
and combine them formally to give a new one. This

17For example, the Planarian worm is divisible into two
worms but is not reducible to two worms. A muon is divis-
ible (i.e. it decays) into an electron and two neutrinos but
is not reducible to them. A magnetic is reducible to a north
and a south pole but is not divisible into them. A proton is
reducible to quarks and gluons but is not divisible into them.
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is again independent from the rest and often is just
mathematical convenience.!®
[To be completed]

5.2.2 Status and open issues

While we consider quantum mechanics to be essen-
tially forward engineered, that is we know the as-
sumptions are necessary and sufficient, there are
some conceptual aspects and details that, if clarified,
would paint a more satisfactory picture.

Link between quantum hydrodynamics, stochas-
tic mechanics, Bohmian mechanics. We should be
able to reconcile the fact that quantum mechanics
can be reframed in these different ways. The fact
that hydrodynamics-like equations emerge should be
linked to the idea that a quantum is a finite size
object that can be thought as made of infinitesimal
parts, as a fluid. Each part, though, is subjected by
the Brownian motion associated with the unknowable
internal dynamics. Stochastic mechanics, then, char-
acterizes those fluctuations while Bohmian mechanics
characterizes the average paths.

Deriving quantum from classical. If the above char-
acterizations are understood, we should be able, in
line of principle, to take a classical system, couple it
with a suitable purely stochastic dynamic and recover
quantum mechanics.

5.3 Thermodynamics and statistical
mechanics

Reverse engineering work for thermodynamics and
statistical mechanics is ongoing.

5.4 Further work

The work still needs to be extended to field theo-
ries, classical (electromagnetism and general relativ-
ity) and quantum (quantum electrodynamics, quan-
tum chromodynamics, ...). Some ideas have been ex-
plored but only at a preliminary stage.

18For example, velocity in any direction can be decomposed
into the components along the axis, but is not divisible or
reducible to those components. A pure state is decomposable
into a linear combination of a basis but is not reducible or
divisible into the basis.



We have not yet attempted to work with field the-
ories, either classical or quantum. On the quantum
side, there are two obstacles we would need to solve.
The first is how to characterize relativistic spin and
the second is the right mathematical tools to use (e.g.
algebraic geometry?). On the classical side, the main
conceptual issue is that we start with distributions
over q and p so it is not clear what these would rep-
resent as distributions over field values.

General relativity. Classical mechanics as derived
in this project is already relativistic, in the sense that
we derive a metric tensor that is locally Minkowskian.
However, it is not clear whether that metric has a
link to the energy/momentum tensor or it is inde-
pendent. One idea to explore is that the presence of
a field changes how states are counted over kinetic
momentum (i.e. {mu®, mu} = F*?). It remains to
be seen whether the curvature of the metric can be
understood in terms of this insight.
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