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Introduction 

• The purpose of this talk is to answer a (seemingly) simple type of 
question: what are Hamiltonian systems? 
– Or Lagrangian? Or classical (vs quantum)? 

• Not all systems are Hamiltonian (or Lagrangian, or classical, or 
quantum) 

• If I have a system in front of me, how can I tell whether it’s a 
Hamiltonian system? 
– When is the state space 𝑇∗𝒬? Or a complex vector space? 

• The problem is that Hamiltonian/Lagrangian classical/quantum 
mechanics start by setting the mathematical framework 
– Unlike Newtonian mechanics, thermodynamics and special relativity 

that start from physical laws or postulates 

• We are left with the mathematical definition: a Hamiltonian system 
is one described by Hamiltonian framework 
– Many appear to be satisfied by this answer 
– To me, it begs the question 
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Introduction 

• To answer the question, we need a way to physically 
motivate Hamiltonian (and Lagrangian) mechanics 

• Start from physical assumptions that characterize the 
system under study 
– Hopefully ideas that are already familiar 

• Show that those assumptions lead necessarily to the 
known mathematical frameworks 
– in the most direct way possible 
– not to some new theory 

• Gain new insights 
– provide a math-physics dictionary 

• The objective of this talk is to show that such a 
program is indeed possible and worthwhile 
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Introduction 

• We limit ourselves here to classical 
Hamiltonian/Lagrangian particle mechanics 
– no relativity, quantum or field theory 

• Go through highlights of the derivation and give 
physical intuition for them 
– Elements from different fields are used: vector spaces, 

topology, measure theory, differential/ 
symplectic/Riemannian geometry 

• Let’s start with an overview of the assumptions 
and what they lead to 
– The rest of the talk is more details and insight to see 

how it all works 
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Overview 

Only 3 assumptions: 
• Determinism and reversibility (given the initial state we can identify 

the final state and vice versa) 
– Dynamical system 
– State space is a topological space, evolution map is a self-

homeomorphism 

• Infinitesimal reducibility (describing the state of the whole is 
equivalent to describing the state of its infinitesimal parts) 
– Hamiltonian mechanics for infinitesimal parts 
– State of the whole is a distribution over the state space for the 

infinitesimal parts (i.e. phase space) 

• Kinematic equivalence (studying the motion of the infinitesimal 
parts is equivalent to studying the state evolution) 
– Lagrangian mechanics for infinitesimal parts 
– Dynamics is the one for massive particles under scalar/vector 

potential forces 
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Assumption I: 
Determinism and reversibility 

The system undergoes deterministic and reversible 
time evolution: given the initial state, we can 
identify the final state; given the final state, we can 
reconstruct the initial state 
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Physical distinguishability and 
topological spaces 

• States are physical configurations of the 
system at a given time 

• => states must be physically distinguishable 

– There must exist an external process (i.e. that 
involves the environment) that is potentially able 
to tell two states apart 

• How do we mathematically capture physical 
distinguishability? 
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Physical distinguishability and 
topological spaces 

External process 

System under study 
(identically prepared 

n times) 

Set of 
outcomes 

Set of 
states 

Set of states compatible with the given outcome 

The collection of all sets of states compatible with all potential outcomes of all 
potential processes form a Hausdorff and second countable topology 
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Physical distinguishability and 
topological spaces 

• Use of sets and set operations is apparent in 
exclusion plots 

 

Range of Higgs masses excluded by different 
experiments 

Range of WIMP  (dark matter) 
mass/cross section excluded by 
different experiments 
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Mapping physical objects and 
continuous functions 

• Physical distinguishability -> topological space 
• We now want to associate initial and final states through 

the evolution map 
• The map has to be compatible with physical 

distinguishability: distinguishing final (or initial) states is 
also distinguishing initial (or final states) 

• How do we mathematically capture maps between 
physically distinguishable objects? 
– If 𝑈 is a distinguishable set of final states, then 𝑓−1(𝑈) is a 

distinguishable set of initial states: 𝑓−1(𝑈) is in the topology 

• A map between distinguishable objects is a continuous map 
by definition 
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Mapping physical objects and 
continuous functions 

Finite precision knowledge of 
one continuous quantity 
corresponds to finite precision 
knowledge of the other 

Finite precision knowledge of one 
continuous quantity does not 
always correspond to finite 
precision knowledge of the other 

Continuous functions are fundamental in physics as they preserve what constitutes a set 
of states that can be associated to the outcome of a physical process. Standard topology 
for ℝ𝑛 excludes infinite precision knowledge of one continuous quantity (sets with one 
point) and implies topological continuity <=> analytical continuity 
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Deterministic and reversible maps and 
homeomorphisms 

• Physical distinguishability -> topological space 

• Map between physically distinguishable objects  
-> continuous map 

• Deterministic and reversible evolution is a 
bijective map 

• A bijective continuous map is a homeomorphism: 
deterministic and reversible evolution is a self-
homeomorphism 
– A map onto the same space that preserves what is 

physically distinguishable (i.e. the topology) 
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Not all self-homeomorphisms are 
deterministic and reversible maps 

Discrete topology Standard (continuous) topology 

Map is a self-homeomorphism 
𝑓: 𝒮 ⟷ 𝒮 

Map is a self-homeomorphism 
𝑓: 𝒮 ⟷ 𝒮 

Cardinality of states is conserved 
# 𝑈 = # 𝑓 𝑈  

? 

Independent variables remain independent 
𝓈: 𝒬1 × 𝒬2 ⟷ 𝒮 

# 𝓈 𝑈, 𝑉 = # 𝑈 # 𝑉 = # 𝑓 𝑈 # 𝑓 𝑉  

? 

A self-homeomorphism that maps a 
set to a proper superset or subset is 
clearly not a deterministic or 
reversible process! 

Need to keep track of the cardinality 
of states and possibilities. We need 
a measure. 
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From assumption I 

• Physical distinguishability -> topological space 

• Map between physically distinguishable 
objects -> continuous map 

• Deterministic and reversible evolution -> self-
homeomorphism 

– Not all self-homeomorphisms -> need a measure 
to count states 
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Assumption II: 
infinitesimal reducibility 

(classical material) 

The system is composed of a homogeneous 
infinitesimally reducible material. Each part 
undergoes deterministic and reversible 
evolution. 
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Classical homogeneous material and 
real vector spaces 

• A “classical material” is: 
– Decomposable: can be divided into smaller amounts 

– Infinitesimally so: can keep dividing arbitrarily 
(“particles” are the limits of such division) 

– Reducible: giving state of whole equivalent to giving 
state of parts 

– Homogeneous: state space of each part is the same 

• A classical fluid is an example 

• How do we mathematically capture the structure 
of such material? 
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Classical homogeneous material and 
real vector spaces 

= 

= 2∗ 

Homogeneous and 
decomposable => law of 
composition +: 𝒞 × 𝒞 → 𝒞 

Infinitesimally decomposable 
=> increase/decrease the 
amount of material by a real 
number 

+ 

These two operations give the structure of a vector space 
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Classical homogeneous material and 
function spaces 

• Infinitesimally reducible homogeneous material -> real vector space 
• We want to characterize the material in terms of the state of each 

particle, the infinitesimal part that is the limit of the process of 
recursive subdivision 

• Let 𝒮 be the state space for particles. What can we tell about 𝒞 the 
state space for the composite system? 
– For each composite state 𝒸 ∈ 𝒞 we have a distribution 𝜌𝒸: 𝒮 → ℝ that 

tells us the amount of material (or density) for that particle state 
– The function is continuous as particle states and amounts of material 

are physically distinguishable 

• The state space 𝒞 is isomorphic as a real vector space to a subspace 
of the real valued continuous functions over 𝒮, the state space for 
particles: 𝒞 ≅ 𝐺 ⊆ 𝐶(𝒮)  
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Integration and measure 

• Infinitesimally reducible homogeneous material -> real vector space 
• Composite state -> continuous distributions over particle state space 
• In practice, we want amounts of material for a set 𝑈 ⊆ 𝒮 of the particle 

states 
– We don’t measure the density of a fluid at a specific position and momentum 
– We measure how much material is in this volume with this momentum range 

• How do we mathematically capture the relationship between the 
distribution 𝜌𝒸 and the amount of material found in 𝑈 ⊆ 𝒮? 
– Given a region 𝑈 ⊆ 𝒮 we have a functional that given a distribution returns 

the amount of material: Λ𝑈: 𝐶(𝒮) → ℝ 
– By Riesz representation theorem, exists unique Borel (i.e. compatible with the 

topology) measure 𝜇 such that Λ𝑈 𝜌𝒸 =  𝜌𝒸𝑑𝜇𝑈
 

A way to count states! 
– Only measure finite amounts of material: the distributions are integrable 

• Particle state space 𝒮 is a measure space. Composite state space 𝒞 is 
isomorphic to subspace of Lebesgue integrable functions: 𝒞 ≅ 𝐺 ⊆ 𝐿1 𝒮   
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Integration and measure 

Take a set of particle states. Fill it with a 
uniform density. Look at the total 
amount of material. 

𝑈  

𝑉  

Zero amount: zero measure set  

Because we have densities and integration we can assign a measure 
(a “size”) to each set of states 

Analogous to using water to measure 
the capacity of a container 

20 G. Carcassi - University of Michigan 



Invariant densities and differentiability 

• … 
• Finite amounts of material -> Measure and integrability 
• For discrete states, Λ𝑈 𝜌𝒸 = ∑𝜌𝒸(𝑞) with 𝑞 a discrete state variable 
• For continuous states, expect Λ𝑈 𝜌𝒸 =  𝜌𝒸 𝑞 𝑑𝑞 with 𝑞 a continuous 

state variable 

– This does not work! Changing variables 𝜌𝒸 𝑞𝑗 = 𝜌𝒸 𝑞𝑖
𝜕𝑞𝑗

𝜕𝑞𝑖
 the density 

changes: densities in general are a function of coordinates 
– Our distributions are a function of the state 𝜌𝒸 𝓈 : they are invariant densities 

• We need to make sure we can have invariant densities 
• Jacobian must be well defined => differentiability 

– 𝒮 is a differentiable manifold 
– 𝒞 isomorphic to the space of integrable differentiable functions: 

 𝒞 ≅ 𝐶1 𝒮 ∩ 𝐿1 𝒮  
– Note: 𝐶1 𝒮 ∩ 𝐿1 𝒮  is not a complete metric space 
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Invariant densities and symplectic 
manifolds 

• … 
• Finite amounts of material -> Measure and integrability 
• Invariant distributions -> Differentiability 
• Jacobian must be unitary 

– Changing physical units should not change our distribution 
– Let 𝒬 be the manifold that defines the system of units, 

invariant densities are defined on T∗𝒬 
– Canonical two-form 𝜔 = 𝑑𝑞𝑖 ∧ ℏ𝑑𝑘𝑖 = 𝑑𝑞𝑖 ∧ 𝑑𝑝𝑖  allows 

“counting” the number of possibilities defined on each  
independent d.o.f. 

– 𝒮 is a symplectic manifold formed by T∗𝒬 and the 
symplectic form 𝜔 
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Invariant densities and symplectic 
manifolds 

𝜔𝑎𝑏 =
0 𝐼𝑛
−𝐼𝑛 0

=
0 1
−1 0

⊗
1 0 0
0 1 0
0 0 1

 

Wedge product (area) within a d.o.f. 

1 ℏ Δ𝑘 = 1 𝑚−1  

Δ𝑞 = 1 𝑚  

1 ℏ Δ𝑘 = 0.01 𝑐𝑚−1  

Δ𝑞 = 100 𝑐𝑚  

Number of possibilities = ℏΔ𝑞Δ𝑘 
is invariant  

Scalar product across independent d.o.f. 

Number of states = ∏ℏΔ𝑞𝑖Δ𝑘𝑖 
=> independent d.o.f are orthogonal 

=> ω sum of projections 

𝑞 = 100 𝑐𝑚/𝑚 𝑞  

Δ𝑞1Δ𝑝1 

Δ𝑞2Δ𝑝2 

𝜔 = 𝑑𝑞𝑖 ∧ ℏ𝑑𝑘𝑖 = 𝑑𝑞𝑖 ∧ 𝑑𝑝𝑖 
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Deterministic and reversible maps and 
symplectomorphisms 

• … 
• Invariant distributions -> Differentiability; symplectic 

(metric) space 𝑇∗𝒬,𝜔   
• Now characterize deterministic and reversible evolution 

– Each particle state mapped to one and only one particle state, 
density values transported to new states, cardinality of 
possibilities and states preserved 

– Deterministic and reversible time evolution is a 
symplectomorphism (an isometry): metric 𝜔 is preserved 

– Infinitesimal symplectomorphism admits potential 𝐻 such that 
𝑑𝑡𝑞

𝑖 = 𝜕𝑝𝑖𝐻          𝑑𝑡𝑝𝑖 = 𝜕𝑞𝑖𝐻 

• Deterministic and reversible time evolution for a particle of 
classical material follows Hamilton’s equations 
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Deterministic and reversible maps and 
symplectomorphisms 

Possibilities (area) within a 
d.o.f. conserved 

Independent d.o.f. remain  
independent (orthogonal) 

Total number of states (volume) is conserved 

(𝑞𝑦, 𝑝𝑦) 

(𝑞𝑥, 𝑝𝑥) 

(𝑞 𝑦, 𝑝 𝑦) 

(𝑞 𝑥, 𝑝 𝑥) 

All that Hamiltonian mechanics does is to conserve the number of states and possibilities 

It’s the continuous equivalent of “3 possibilities for x 
times 2 possibilities for y gives 6 total states” 
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From assumption II 

• Infinitesimally reducible homogeneous material  
-> real vector space 

• Composite state -> continuous distributions over 
particle state space 

• Finite amounts of material -> Measure and 
integrability 

• Invariant distributions -> Differentiability; 
symplectic (metric) space 𝑇∗𝒬,𝜔  

• Deterministic and reversible map -> 
symplectomorphism (isometry) and Hamilton’s 
equations 
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Assumption III: 
kinematic equivalence 

Studying the motion (kinematics) of the system 
is equivalent to studying its state evolution 
(dynamics) 
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Kinematic equivalence 
and Lagrangian systems 

• Each particle has no relevant internal dynamics: motion 
tells us everything 
– Falling rock has no relevant internal dynamics 
– A helicopter has relevant internal dynamics 

• How do we capture mathematically a system where 
kinematic equivalence applies? 
– One-to-one relationship (homeomorphism) between state 

variables 𝑞, 𝑝  and initial conditions 𝑥, 𝑥 . State will be 
identified by only position and velocity 

– Set 𝑥𝑖 = 𝑞𝑖. We have 𝑥 𝑖 = 𝑢𝑖 𝑞𝑖 , 𝑝𝑖 = 𝑑𝑡𝑞
𝑖 = 𝜕𝑝𝑖𝐻. 𝑢𝑖 is 

invertible, monotonic in 𝑝𝑖. 𝐻 is convex, admits a Lagrangian 

• A Hamiltonian system where kinematic equivalence applies 
is a Lagrangian system 
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Kinematic equivalence, inertial mass 
and conservative forces 

• Can convert between state variables and initial conditions -
> Convex Hamiltonian; existence of Lagrangian 

• Distribution must be expressible in terms of initial 
conditions 
– Use initial conditions to count states. 𝜔 must be proportional to 

an invariant bilinear function: 𝜔 = 𝑑𝑞𝑖 ∧ 𝑑𝑝𝑖 ∝ 𝑔(𝑑𝑥𝑖 , 𝑑𝑥 𝑖)  

– 𝑑𝑞𝑖 ∧ 𝑑𝑝𝑖 = 𝑚𝑑𝑥𝑖𝑔𝑖𝑗𝑑𝑢
𝑗 = 𝑚𝑑𝑥𝑖𝑑𝑢𝑖.      𝑑𝑝𝑖 = 𝑚𝑑𝑢𝑖. 

 𝑝𝑖 = 𝑚𝑢𝑖 + 𝐴𝑖(𝑥
𝑗) 

– 𝜕𝑝𝑖𝐻 = 𝑑𝑡𝑞
𝑖 = 𝑢𝑖  

 𝐻 =
1

2𝑚
𝑝𝑖 − 𝐴𝑖 𝑔

𝑖𝑗 𝑝𝑗 − 𝐴𝑗 + 𝑉(𝑞𝑘) 

• The Hamiltonian limited to particle under scalar and vector 
potential forces 
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Kinematic equivalence, inertial mass 
and conservative forces 

𝑢0 𝑢1 
More massive object 

= 
more states 

What is inertial mass? It’s the 
constant that tells us how many 
possibilities (i.e. possible states) 
there are for a unit range of 
velocity. 

Why is a more massive body more difficult to accelerate? Because 
for the same change in velocity it has to go through more states. 

What are conservative forces? The ones that conserve the number 
of states (deterministic and reversible forces). 
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From assumption III 

• Can convert between state variables and 
initial conditions -> Convex Hamiltonian; 
existence of Lagrangian 

• Invariant densities on initial conditions -> 
linear relationship between conjugate 
momentum and velocity; inertial mass; 
scalar/vector potential forces 
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Conclusion 

• Physically motivating Hamiltonian and Lagrangian 
mechanics is possible and offers insights 

• Classical Hamiltonian and Lagrangian mechanics 
founded upon three physical assumptions, which give 
the definition of states and their laws of evolution 
– Only distributions give meaningful account for use of 

cotangent bundle/Hamilton’s equations 

– Kinematic equivalence gives potential forces, tells why 
second order equations of motion, what is inertial mass 

• Extending this approach to other fundamental theories 
may give insights useful to address open problems 
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